Skip to main content
Log in

Crystallization kinetics of tellurium-rich Se–Te–Sn glassy alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) has been used to study the non-isothermal crystallization kinetics of Se30Te70−xSnx (for x = 0, 1.5 2.5 and 4.5) glassy alloys. Characteristic kinetic parameters say glass transition temperature (T g), peak crystallization temperature (T p) and melting temperature (T m) are determined from the DSC curves, recorded at four different heating rates, i.e., 9, 12, 15, 18 K min−1. The characteristic temperatures T g, T c and T m are found to increase with an increase in Sn concentration as well as with the heating rate (α). The increase in T g, T p and T m may be ascribed to the increase in cross-linking of amorphous network due to the dispersion of Sn into the Se chains. The activation energy of glass transition (E g), crystallization activation energy (E c) and Avrami exponent (n) have been evaluated from the heating rate dependence of T g, T c and T p using Kissinger, Mahadevan, Augis-Bennett and Moynihan methods. Thermal stability and glass-forming ability of amorphous Se30Te70−xSnx alloy have also been examined. Our results show that Se30Te70−xSnx composition, with thermal stability parameter H R > 0.5, is thermally stable and has characteristics of good glass former. Further, the composition corresponding to x = 1.5 is found to be thermally more stable as compared to the other compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang MF, Jang MS, Huang JC, Lee CS. Synthesis and characterization of quaternary chalcogenides InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9. J Solid Stat Chem. 2009;182:1450–6.

    Article  CAS  Google Scholar 

  2. Singh AK. A short over view on advantage of chalcogenide glassy alloys. J Non-Oxide Glas. 2012;3:1–4.

    CAS  Google Scholar 

  3. Ahmad M, Thangaraj R, Sathiaraj TS. Heterogeneous crystallization and composition dependence of optical parameters in Sn–Sb–Bi–Se chalcogenides. J Mater Sci. 2010;45:1231–6.

    Article  CAS  Google Scholar 

  4. Chandel N, Mehta N, Kumar A. Investigation of a.c. conductivity measurements in a-Se80Te20 and a-Se80Te10M10(M = Cd, In, Sb) alloys using correlated barrier hopping model. Current Appl Phys. 2012;12:405–12.

    Article  Google Scholar 

  5. Wakkad MM. Crystallization kinetics of Pb20Ge17Se63 and Pb20Ge22Se58 chalcogenide glasses. J Therm Anal Calorim. 2001;63:533–47.

    Article  CAS  Google Scholar 

  6. Imran MMA, Bhandari D, Saxena NS. Kinetic studies of bulk Ge22Se78−x Bi x (x = 0, 4 and 8) semiconducting glasses. J Therm Anal Calorim. 2001;65:257–74.

    Article  CAS  Google Scholar 

  7. Lafi OA, Imran MAM, Ma’rouf KA. Glass transition activation energy, glass-forming ability and thermal stability of Se90In10−x Sn x  (x = 2, 4, 6 and 8) chalcogenide glasses. Phys B Condens Matter. 2007;395(1–2):69–75.

    Article  CAS  Google Scholar 

  8. Svoboda R, Krbal M, Málek J. Crystallization kinetics in Se–Te glassy system. J Non-Cryst Solids. 2011;357:3123–9.

    Article  CAS  Google Scholar 

  9. Bartak J, Svoboda R, Málek J. Electrical conductivity and crystallization kinetics in Te–Se glassy system. J Appl Phys. 2012;111:094908.

    Article  Google Scholar 

  10. Svoboda R, Gutwrich J, Málek J, Wagner T. Crystallization kinetics of Se–Te thin films. Thin Solid Films. 2014;571:121–6.

    Article  CAS  Google Scholar 

  11. Hafiz MM, Moharram AH, Abdel-Rehim MA, Abu-Sehly AA. The effect of annealing on the optical absorption and electrical conduction of amorphous As24.5Te71Cd4.5 thin films. Thin Solid Films. 1997;292:7–13.

    Article  CAS  Google Scholar 

  12. Salman F. AC conductivity and dielectric study of chalcogenide glasses of Se–Te–Ge system. Turk J Phys. 2004;28:41–8.

    CAS  Google Scholar 

  13. Farid AS, Atyia HE. Glass transition and crystallization study of Te additive Se\Bi chalcogenide glass. J Non-Cryst Solids. 2015;408:123–9.

    Article  CAS  Google Scholar 

  14. Hrdlicka M, Prikryl J, Pavlista M, Benes L, Vlcek M, Frumar F. Optical parameters of In–Se and In–Se–Te thin amorphous films prepared by pulsed laser deposition. J Phys Chem Solids. 2007;68:846–9.

    Article  CAS  Google Scholar 

  15. Wahab FA. Observation of phase separation in some Se–Te–Sn chalcogenide glasses. Phys B. 2011;406:1053–9.

    Article  Google Scholar 

  16. Abdel-Rahim MA, Gaber A, Abu-Sehly AA, Abdelazim NM. Crystal growth kinetics in Se87.5 Te10 Sn2.5 glass. J Non-Cryst Solids. 2013;376:158–64.

    Article  CAS  Google Scholar 

  17. Gao YQ, Wang W. On the activation energy of crystallization in metallic glasses. J Non-Cryst Solids. 1986;81:129–34.

    Article  CAS  Google Scholar 

  18. Deepika Jain PK, Rathore KS, Saxena N. Structural characterization and phase transformation kinetics of Se58Ge42−x Pb x (x = 9, 12) chalcogenide glasses. J Non-Cryst Solids. 2009;355:1274–80.

    Article  CAS  Google Scholar 

  19. Al-Ghamdi AA, Alvi MA, Khan SA. Non-isothermal crystallization kinetic study on Ga15Se85−x Ag x chalcogenide glasses by using differential scanning calorimetry. J Alloys Compd. 2011;509:2087–93.

    Article  CAS  Google Scholar 

  20. Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non-Cryst Solids. 1983;54:253–75.

    Article  CAS  Google Scholar 

  21. Chander R, Thangaraj R. Thermal and optical analysis of Te-substituted Sn–Sb–Se chalcogenide semiconductors. J Appl Phys A. 2010;99:181–7.

    Article  CAS  Google Scholar 

  22. Joraid AA. The effect of temperature on nonisothermal crystallization kinetics and surface structure of selenium thin films. Phys B. 2007;390:263–9.

    Article  CAS  Google Scholar 

  23. Kumar S, Singh K. Glass transition, thermal stability and glass-forming tendency of Se90−x Te5Sn5In x multi-component chalcogenide glasses. Thermochim Acta. 2012;528:32–7.

    Article  CAS  Google Scholar 

  24. Dohare C, Mehta N, Kumar A. Effect of some metallic additives (Ag, Cd, and Zn) on the crystallization kinetics of glassy Se70Te30 alloy. Mater Chem Phys. 2011;127:208–13.

    Article  CAS  Google Scholar 

  25. Heera P, Kumar A, Jharwal M, Sharma R. Calorimetric study of tellurium rich Se–Te–Sn glasses. AIP Conf Proc. 2016;1731:070046-1–3.

    Google Scholar 

  26. Heera P, Kumar A, Sharma R. Physical and dielectric properties of Sn doped Se–Te glassy system. J Ovonic Res. 2012;8(2):29–40.

    CAS  Google Scholar 

  27. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  28. Kissinger HE. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  29. Mohynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7.

    Article  Google Scholar 

  30. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the kissinger method. J Therm Anal Calorim. 1978;13:283–92.

    Article  CAS  Google Scholar 

  31. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  32. Matusita K, Konatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.

    Article  CAS  Google Scholar 

  33. Lafi OA, Imran MMA, Abu-Shaweesh NI, Al Kurdi FM, Khatatbeh IK. Effect of chemical ordering on the crystallization behavior of Se90Te10−x Sn x (x = 2, 4, 6, and 8) chalcogenide glasses. J Phys and Chem Solids. 2014;75:790–5.

    Article  CAS  Google Scholar 

  34. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.

    Article  CAS  Google Scholar 

  35. Patial BS, Thakur N, Tripathi SK. Crystallization study of Sn additive Se–Te chalcogenide alloys. J Therm Anal Calorim. 2011;106:845–52.

    Article  CAS  Google Scholar 

  36. Rao KJ. Structural chemistry of glasses. New York: Elsevier Science & Technology; 2002.

    Google Scholar 

  37. Yinnon H, Uhlmann DR. A kinetic treatment of glass formation VII: transient nucleation in non-isothermal crystallization during cooling. J Non-Cryst Solids. 1982;50(2):189–202.

    Article  CAS  Google Scholar 

  38. Heireche MM, Belhadji M, Hakiki NE. Non-isothermal crystallisation kinetics study on Se90-xIn10Sb x (x = 0, 1, 2, 4, 5) chalcogenide glasses. J Therm Anal Calorim. 2014;114:195.

    Article  Google Scholar 

  39. Sakka S, Mackenzie JD. Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J Non-Cryst Solids. 1971;6:145.

    Article  CAS  Google Scholar 

  40. Saad M, Poulain M. Glass forming ability criterion. Mater Sci Forum. 1987;19–20:11–8.

    Article  Google Scholar 

  41. Dietzel A. Glass structure and glass properties. Glass Tech Ber. 1968;22:41–50.

    Google Scholar 

  42. Uhlmann DR. A kinetic treatment of glass formation. J Non-Cryst Solids. 1972;7:337–48.

    Article  CAS  Google Scholar 

  43. Hruby A. Evaluation of glass-forming tendency by means of DTA. J Phys B. 1972;22:1187–93.

    CAS  Google Scholar 

  44. Mehta N, Tiwari RS, Kumar A. Glass forming ability and thermal stability of some Se–Sb glassy alloys. Mater Res Bull. 2006;41:1664–72.

    Article  CAS  Google Scholar 

  45. Svoboda R, Kincl M, Málek J. Thermal characterization of Se–Te thin films. J Alloys Compd. 2015;644:40–6.

    Article  CAS  Google Scholar 

  46. Bhargva A, Kalla J. DTA and thermal stability study of Se–Te–Sn glass. Int J Mat Sci Eng. 2016;4:126–32.

    Google Scholar 

Download references

Acknowledgements

We are thankful to Manish Jherwal CSIO Chandigarh for scanning our samples on DSC and valuable suggestions regarding the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heera, P., Kumar, A. & Sharma, R. Crystallization kinetics of tellurium-rich Se–Te–Sn glassy alloys. J Therm Anal Calorim 130, 661–669 (2017). https://doi.org/10.1007/s10973-017-6442-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6442-x

Keywords

Navigation