Skip to main content
Log in

Some basic correlations in the thermal (kinetic) stability of inclusion compounds on the basis of microporous metal–organic frameworks

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) have promising practical applications in gas storage, separation and purification, and catalysis. The standard process for MOF production begins with the synthesis of the inclusion compound. The molecules of the organic solvent used are caught in the channels and caves of the MOF structure. These primary inclusion guest molecules are excluded further by the evacuation or by the heating. We investigate a series of inclusion compounds and study the correlation between their thermal (kinetic) stability and the framework and guest molecule properties. Thermogravimetric curves are used for the kinetic studies. Kinetic parameters of decomposition are estimated within the approaches of non-isothermal kinetics (“model-free” kinetics and nonlinear regression methods). We discuss guest molecular kinetic diameters, guest molecule sizes, shape and polarity, the guest phase state (fluid or solid) within the framework pores, the flexibility of the framework structures, the enthalpy and entropy contributions to the kinetic stability and the inclusion compound properties with very similar frameworks (channel walls with similar chemical constitutions), but with different channels length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guillerm V, Kim D, Eubank JF, Luebke R, Liu X, Adil K, Lah MS, Eddaoudi M. A supermolecular building approach for the design and construction of metal–organic frameworks. Chem Soc Rev. 2014;43:6141–72. doi:10.1039/C4CS00135.

    Article  CAS  Google Scholar 

  2. Farha OK, Hupp JT. Rational design, synthesis, purification, and activation of metal–organic framework materials. Acc Chem Res. 2010;43:1166–75. doi:10.1021/ar1000617.

    Article  CAS  Google Scholar 

  3. Zhang Z, Zhao Y, Gong O, Li Z, Li J. MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. Chem Commun. 2013;49:653–61. doi:10.1039/C2CC35561B.

    Article  CAS  Google Scholar 

  4. Bae Y-S, Snurr RQ. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem Int Ed. 2011;50:11586–96. doi:10.1002/anie.201101891.

    Article  CAS  Google Scholar 

  5. Tranchemontagne DJ, Park KS, Furukawa H, Eckert J, Knobler CB, Yaghi OM. Hydrogen storage in new metal–organic frameworks. J Phys Chem C. 2012;116:13143–51. doi:10.1021/jp302356q.

    Article  CAS  Google Scholar 

  6. Langmi HW, Ren J, North B, Mathe M, Bessarabov D. Hydrogen storage in metal–organic frameworks: a review. Electrochim Acta. 2014;128:368–92. doi:10.1016/j.electacta.2013.10.190.

    Article  CAS  Google Scholar 

  7. Yu Y, Ren Y, Shen W, Deng H, Gao Z. Applications of metal–organic frameworks as stationary phases in chromatography. TrAC (Trends Anal Chem). 2013;50:33–41. doi:10.1016/j.trac.2013.04.014.

    Article  CAS  Google Scholar 

  8. Van de Voorde B, Bueken B, Denayer J, De Vos D. Adsorptive separation on metal–organic frameworks in the liquid phase. Chem Soc Rev. 2014;43:5766–88. doi:10.1039/C4CS00006D.

    Article  Google Scholar 

  9. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev. 2014;43:6011–61. doi:10.1039/C4CS00094C.

    Article  CAS  Google Scholar 

  10. Liu Y, Xuan W, Cui Y. Engineering homochiral metal–organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mat. 2010;22:4112–35. doi:10.1002/adma.201000197.

    Article  CAS  Google Scholar 

  11. Hu Z, Deibert BJ, Li J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev. 2014;43:5815–40. doi:10.1039/C4CS00010B.

    Article  CAS  Google Scholar 

  12. Pramanik S, Hu Z, Zhang X, Zheng C, Kelly S, Li J. A systematic study of fluorescence-based detection of nitroexplosives and other aromatics in the vapor phase by microporous metal–organic frameworks. Chem A Eur J. 2013;19:15964–71. doi:10.1002/chem.201301194.

    Article  CAS  Google Scholar 

  13. Desai AW, Manna B, Karmakar A, Sahu A, Ghosh SK. A water-stable cationic metal–organic framework as a dual adsorbent of oxoanion pollutants. Angew Chem Int Ed. 2016;55:7811–5. doi:10.1002/anie.201600185.

    Article  CAS  Google Scholar 

  14. Cunha D, Yahia MB, Hall S, Miller SR, Chevreau H, Elkaïm E, Maurin G, Horcajada P, Serre C. Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks. Chem Mater. 2013;25:2767–76. doi:10.1021/cm400798p.

    Article  CAS  Google Scholar 

  15. Sun C-Y, Qin C, Wang C-G, Su Z-M, Wang S, Wang X-L, Yang G-S, Shao K-Z, Lan Y-Q, Wang E-B. Chiral nanoporous metal–organic frameworks with high porosity as materials for drug delivery. Adv Mater. 2011;23:5629–32. doi:10.1002/adma.201102538.

    Article  CAS  Google Scholar 

  16. Goesten MG, Juan-Alcañiz J, Ramos-Fernandez EV, Gupta KBSS, Stavitski E, van Bekkum H, Gascon J, Kapteijn F. Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity. J Catal. 2011;281:177–87. doi:10.1016/j.jcat.2011.04.015.

    Article  CAS  Google Scholar 

  17. Serre C, Mellot-Draznieks C, Surblé S, Audebrand N, Filinchuk Y, Férey G. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science. 2007;315:1828–31. doi:10.1126/science.1137975.

    Article  CAS  Google Scholar 

  18. Han J, Wang D, Du YH, Xi S, Chen Z, Yin S, Zhou T, Xu R. Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation. Appl Catal A. 2016;521:83–9. doi:10.1016/j.apcata.2015.10.015.

    Article  CAS  Google Scholar 

  19. Logvinenko VA, Dybtsev DN, Bolotov VA, Fedin VP. Thermal decomposition of inclusion compounds on the base of the metal–organic framework [Zn2(bdc)2(dabco)]. Part I. J Therm Anal Calorim. 2015;121:491–7.

    Article  CAS  Google Scholar 

  20. Logvinenko VA, Aliev SB, Bolotov VA, Dybtsev DN, Fedin VP. Thermal (kinetic) stability of inclusion compounds on the basis of porous metal–organic frameworks. Dependence on the guest and framework properties. J Therm Anal Calorim. 2017;127:779–88. doi:10.1007/s10973-016-5398-6.

    Article  CAS  Google Scholar 

  21. Logvinenko VA, Sapchenko SA, Fedin VP. Thermal decomposition of inclusion compounds on the base of the metal–organic framework [Zn4(dmf)(ur)2(ndc)4]. Part I. J Therm Anal Calorim. 2014;117:747–53.

    Article  CAS  Google Scholar 

  22. Logvinenko VA, Sapchenko SA, Fedin VP. Thermal decomposition of inclusion compounds on the base of the metal–organic framework [Zn4(dmf)(ur)2(ndc)4]. Part II. J Therm Anal Calorim. 2016;123:697–702.

    Article  CAS  Google Scholar 

  23. Zavakhina MS, Samsonenko DG, Virovets AV, Dybtsev DN, Fedin VP. Homochiral Cu(II) and Ni(II) malates with tunable structural features. J Solid State Chem. 2014;210:125–9.

    Article  CAS  Google Scholar 

  24. Netzsch Thermokinetics. In: Netzsch Thermokinetics. http://www.netzsch-thermal-analysis.com/us/products-%20%20solutions/advanced-software/thermokinetics.html.

  25. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.

    Article  CAS  Google Scholar 

  26. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  27. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci. 1963;6:183–95.

    Google Scholar 

  28. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  29. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.

    Article  CAS  Google Scholar 

  30. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:478–523.

    Google Scholar 

  31. Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1992;203:167–75.

    Article  CAS  Google Scholar 

  32. Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo-analytical data—advantages and limitations. Thermochim Acta. 2002;391:119–27.

    Article  CAS  Google Scholar 

  33. Vyazovkin S. Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  34. Simon P. Single-step kinetics approximation employing nonarrhenius temperature functions. J Therm Anal Calorim. 2005;79:703–8.

    Article  CAS  Google Scholar 

  35. Simon P. The single-step approximation: attributes, strong and weak sides. J Therm Anal Calorim. 2007;88:709–15.

    Article  CAS  Google Scholar 

  36. Borchard HJ, Daniels F. The application of differential thermal analysis to the study of reaction kinetics. J Am Chem Soc. 1957;79:41–6.

    Article  Google Scholar 

  37. Vyazovkin S, Burnham AK, Criado JM, Luis A, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  38. Vyazovkin S, Chrissafis K, Di Lorenzo M-R, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol J-J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  39. Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Berlin: Springer; 2015.

    Book  Google Scholar 

  40. Simon P, Thomas P, Dubaj T, Cibulkova Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.

    Article  CAS  Google Scholar 

  41. Simon P, Dubaj T, Cibulkova Z. Equivalence of the Arrhenius and non-Arrhenian temperature functions in the temperature range of measurement. J Therm Anal Calorim. 2015;120:231–8.

    Article  CAS  Google Scholar 

  42. Sestak J. Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim. 2014;117:3–7.

    Article  CAS  Google Scholar 

  43. Galwey AK. What theoretical and/or chemical significance is to be attached to the magnitude of an activation energy determined for a solid-state decomposition by thermal analysis? J Therm Anal Calorim. 2006;86:267–86.

    Article  CAS  Google Scholar 

  44. Roura P, Farjas J. Analytical solution for the Kissinger equation. J Mater Res. 2009;24:3095–8.

    Article  CAS  Google Scholar 

  45. Holba P, Šesták J. Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Phys Chem (translation from Russian journal). 2014;40:486–91.

    Article  CAS  Google Scholar 

  46. Dubaj T, Cibulková Z, Šimon P. An incremental isoconversional method for kinetic analysis based on the orthogonal distance regression. J Comput Chem. 2015;36:392–8.

    Article  CAS  Google Scholar 

  47. Logvinenko V. Stability and reactivity of coordination and inclusion compounds in the reversible processes of thermal dissociation. Thermochim Acta. 1999;340–341:293–9.

    Article  Google Scholar 

  48. Logvinenko V, Drebushchak V, Pinakov D, Chekhova G. Thermodynamic and kinetic stability of inclusion compounds under heating. J Therm Anal. 2007;90:23–30.

    Article  CAS  Google Scholar 

  49. Lomovsky O, Bychkov A, Lomovsky I, Logvinenko V, Burdukov A. Mechanochemical production of lignin-containing powder fuels from biotechnical industry waste: a review. Therm Sci. 2015;19:219–29.

    Article  Google Scholar 

  50. Vasilyeva I, Logvinenko V. Contribution of chemical methods to the study of nanostructure of ultrafine and amorphous materials. Solid State Phenom. 2017;257:237–40.

    Article  Google Scholar 

  51. Logvinenko VA, Makotchenko VG, Fedorov VE. Reactivity in combustion process for expanded graphites: influence of dimensional effect. Nanosyst Phys Chem Math (NANO. F & H & M). 2016;7:234–43.

    Article  Google Scholar 

  52. Makotchenko VG, Pinakov DV, Logvinenko VA. The influence of dimensional effects on the composition and properties of polydicarbonfluoride. Chem Asian J. 2015;10:1761–7.

    Article  CAS  Google Scholar 

  53. Chekhova GN, Pinakov DV, Shubin YV, Logvinenko VA. Structural rearrangements of the inclusion compound of fluorinated graphite with acetonitrile during isothermal deintercalation. J Therm Anal Calorim. 2017;128:349–55. doi:10.1007/s10973-016-5846-3.

    Article  CAS  Google Scholar 

  54. Bushuev MB, Pishchur DP, Logvinenko VA, Gatilov YV, Korolkov IV, Shundrina IK, Nikolaenkova EB, Krivopalov VP. Mononuclear iron(II) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition. Dalton Trans. 2016;45:107–20.

    Article  CAS  Google Scholar 

  55. Dybtsev DN, Chun H, Kim K. Rigid and flexible: a highly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew Chem Int Ed. 2004;43:5033–6.

    Article  CAS  Google Scholar 

  56. Hauptmann S, Graefe J, Remane H. Organische Chemie, 1 Auflage 1976, Deutscher Verlag für Grundstoffindustrie (3 Auflage 1991, Wiley-VCH, ISBN 3-527-30925-X).

  57. Logvinenko VA. Stability of supramolecular compounds under heating. Thermodynamic and kinetic aspects. J Therm Anal Calorim. 2010;101:577–83.

    Article  CAS  Google Scholar 

  58. Poling BE, Prausnitz JM, O’Connell JP. The properties of gases and liquids. New York: McGraw-Hill; 2001.

    Google Scholar 

  59. Mehio N, Dai S, Jiang D. Quantum mechanical basis for kinetic diameters of small gaseous molecules. J Phys Chem A. 2014;118:1150–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Russian Foundation for Basic Research (Grant 14–03–00291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Logvinenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logvinenko, V., Zavakhina, M., Bolotov, V. et al. Some basic correlations in the thermal (kinetic) stability of inclusion compounds on the basis of microporous metal–organic frameworks. J Therm Anal Calorim 130, 335–342 (2017). https://doi.org/10.1007/s10973-017-6317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6317-1

Keywords

Navigation