Skip to main content
Log in

A critical approach to the Kissinger analysis for studying non-isothermal crystallization of polymers

Limits and possibilities

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work presents a new empirical method to analyse the non-isothermal crystallization kinetics of polypropylene. The Kissinger analysis, widely used in the literature to calculate an activation energy of the crystallization mechanism, was critically examined regarding its applicability to the crystallization process of semicrystalline polymers. The analogy between the systems modelled by Kissinger and polymer crystallization applies only in very restrictive cases, and the activation energy, as commonly used, is an ill-defined quantity. Nevertheless, it was shown that the Kissinger analysis yields a phenomenological parameter, here called REact, related to the crystallization kinetics at moderately high cooling rates (up to ~50 °C s−1). This parameter, created with data obtained on more than 20 poly(propylene) compounds based on four different base polymers of different chain structure and composition, correctly estimates the crystallization performance of different systems at higher cooling rates, demonstrated by a good correlation between REact and the morphology formed in cable extrusion and cast film extrusion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brucato V, Kiflie Z, La Carrubba V, Piccarolo S. The continuous cooling transformation (CCT) as a flexible tool to investigate polymer crystallization under processing conditions. Adv Polym Technol. 2009;28:86–119.

    Article  CAS  Google Scholar 

  2. Brückner S, Meille SV, Petraccone IV, Pirozzi B. Polymorphism in isotactic polypropylene. Prog Polym Sci. 1991;16:361–404.

    Article  Google Scholar 

  3. De Rosa C, Auriemma F, Vollaro P, Resconi L, Guidotti S, Camurati I. Crystallization behavior of propylene–butene copolymers: the trigonal form of isotactic polypropylene and form i of isotactic poly(1-butene). Macromolecules. 2011;44:540–9.

    Article  Google Scholar 

  4. Lotz B. A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules. 2014;47:7612–24.

    Article  CAS  Google Scholar 

  5. Brucato V, Piccarolo S, La Carrubba V. An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates. Chem Eng Sci. 2002;57:4129–43.

    Article  CAS  Google Scholar 

  6. De Santis F, Adamovsky S, Titomanlio G, Schick C. Isothermal Nanocalorimetry of isotactic polypropylene. Macromolecules. 2007;40:9026–31.

    Article  Google Scholar 

  7. Lamberti G, De Santis F, Brucato V, Titomanlio G. Modeling the interactions between light and crystallizing polymer during fast cooling. Appl Phys A. 2004;78:895–901.

    Article  CAS  Google Scholar 

  8. Van Drongelen M, Gahleitner M, Spoelstra AB, Govaert LE, Peters GMW. Flow-induced solidification of high-impact polypropylene copolymer compositions: morphological and mechanical effects. J Appl Polym Sci. 2015;132:42040.

    Google Scholar 

  9. Silvestre C, Cimmino S, Duraccio D, Schick C. Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun. 2007;28:875–81.

    Article  CAS  Google Scholar 

  10. De Santis F, Lamberti G, Peters GWM, Brucato V. Improved experimental characterization of crystallization kinetics. Eur Polym J. 2005;41:2297–302.

    Article  Google Scholar 

  11. Kissinger HE. Variation of peak temperature with heating rate in different thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  12. Naguib HE, Park CB, Song S-W. Effect of supercritical gas on crystallization of linear and branched polypropylene resins with foaming additives. Ind Eng Chem Res. 2005;44:6685–91.

    Article  CAS  Google Scholar 

  13. Tian J, Yu W, Zhou C. Crystallization behaviors of linear and long chain branched polypropylene. J Appl Polym Sci. 2007;104:3592–600.

    Article  CAS  Google Scholar 

  14. Ni Q-L, Fan J-Q, Dong J-Y. Crystallization behavior and crystallization kinetic studies of isotactic polypropylene modified by long-chain branching polypropylene. J Appl Polym Sci. 2009;114:2180–94.

    Article  CAS  Google Scholar 

  15. Zhao S, Xin Z. Crystallization kinetics of isotactic polypropylene nucleated with organic dicarboxylic acid salts. J Appl Polym Sci. 2009;112:1471–80.

    Article  CAS  Google Scholar 

  16. Duan J, Dou Q. Investigation on β-polypropylene/PP-g-MAH/surface treated talc composites. J Appl Polym Sci. 2013;130:206–21.

    Article  CAS  Google Scholar 

  17. Zhao SC, Cai Z, Xin Z. A highly active novel β-nucleating agent for isotactic polypropylene. Polymer. 2008;49:2745–54.

    Article  CAS  Google Scholar 

  18. Wei ZY, Zhang WX, Chen GY, Liang JC, Yang S, Wang P, Liu LA. Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim. 2010;102:775–83.

    Article  CAS  Google Scholar 

  19. Shi Y-H, Dou Q. Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene. J Therm Anal Calorim. 2013;112:901–11.

    Article  CAS  Google Scholar 

  20. Xu L, Zhang X, Xu K, Lin S, Chen M. Variation of non-isothermal crystallization behavior of isotactic polypropylene with varying β-nucleating agent content. Polym Int. 2010;59:1441–50.

    Article  CAS  Google Scholar 

  21. Li J, Zhou C, Gang W. Study on nonisothermal crystallization of maleic anhydride grafted polypropylene/montmorillonite nanocomposite. Polym Test. 2003;22:217–23.

    Article  Google Scholar 

  22. Fillon B, Lotz B, Thierry A, Wittmann JC. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci B Polym Phys. 1993;31:1395–405.

    Article  CAS  Google Scholar 

  23. Androsch R, Di Lorenzo ML, Schick C, Wunderlich B. Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer. 2010;51:4639–62.

    Article  CAS  Google Scholar 

  24. Nandi S, Ghosh AK. Crystallization kinetics of impact modified polypropylene. J Polym Res. 2007;14:387–96.

    Article  CAS  Google Scholar 

  25. Gahleitner M, Jääskeläinen P, Ratajski E, Paulik C, Reussner J, Wolfschwenger J, Neißl W. Propylene–ethylene random copolymers: comonomer effects on crystallinity and application properties. J Appl Polym Sci. 2005;95:1073–81.

    Article  CAS  Google Scholar 

  26. Cavallo D, Azzurri F, Floris R, Alfonso GC, Balzano L, Peters GWM. Continuous cooling curves diagrams of propene/ethylene random copolymers. The role of ethylene counits in mesophase development. Macromolecules. 2010;43:2890–6.

    Article  CAS  Google Scholar 

  27. Chen J, Cao Y, Li H. The effect of propylene–ethylene copolymers with different comonomer content on melting and crystallization behavior of polypropylene. J Appl Polym Sci. 2009;116:1172–83.

    Google Scholar 

  28. Gahleitner M, Grein C, Kheirandish S, Wolfschwenger J. Nucleation of polypropylene homo- and copolymers. Int Polym Process. 2011;26:2–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Katja Klimke and Albrecht Dix for useful discussions. The help of Martina Wagner and Milada Hamzic with the DSC measurements is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tranchida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tranchida, D., Gloger, D. & Gahleitner, M. A critical approach to the Kissinger analysis for studying non-isothermal crystallization of polymers. J Therm Anal Calorim 129, 1057–1064 (2017). https://doi.org/10.1007/s10973-017-6303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6303-7

Keywords

Navigation