Skip to main content
Log in

Crystallization study of Se86Sb14 glass

A new method to determine the kinetic exponent (n) with high accuracy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study concerns with high-accuracy determination of crystallization activation energy (\(E_{\text{c}}\)), the frequency factor (\(k_{0}\)), the kinetic exponent (n) for Se86Sb14 glass. Different three methods have been used to investigate the \(E_{\text{c}} \,{\text{and}}\,k_{0 }\) values. It was found that the deduced value of k 0 based on Kissinger’s method is too small compared with the others. Therefore, it can’t be used to investigate k 0 value. Where \(E_{\text{c}} \,{\text{and}}\,k_{0}\) values are already known, the overall reaction rate \(k = k_{0 } { \exp }\left( { - E_{\text{c}} /\left( {R \cdot T} \right)} \right)\) at any temperature can be calculated. Now, Avrami’s equation (\(\chi = 1 - { \exp }\left( { - \left( {kt} \right)^{\text{n}} } \right)\)) contains only one unknown which is the kinetic exponent (n). This method enables us to determine n value without any approximations. The values’ crystallization fraction \((\chi_{\text{th}} )\) that theoretically calculated is the same as that experimentally investigated \((\chi_{{{ \exp } .}} )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vázquez J, García D, Barreda G, López-Alemany PL, Villares P, Jiménez-Garay R. Crystallization of Ge0.08Sb0.15Se0.77 glass studied by DSC. J Non-Cryst Solids. 2004;345–346:142–7.

    Article  Google Scholar 

  2. Mehta N, Agarwal P, Kumar A. A study of the crystallization kinetics in Se68Ge22Pb10 chalcogenide glass. Indian J Eng Mater Sci. 2004;11(6):511–5.

    CAS  Google Scholar 

  3. Abu-Sehly AA, Alamri SN, Joraid AA. Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples. J Alloy Compd. 2009;476(1–2):348–51.

    Article  CAS  Google Scholar 

  4. Balo ŞN, Yakuphanoglu F. The effects of Cr on isothermal oxidation behavior of Fe-30Mn-6Si alloy. Thermochim Acta. 2013;560:43–6.

    Article  CAS  Google Scholar 

  5. Reddy KR, Tashiro K, Sakurai T, Yamaguchi N. Isotope effect on the isothermal crystallization behavior of isotactic polypropylene blends between the deuterated and hydrogenated species. Macromolecules. 2009;42(5):1672–8.

    Article  CAS  Google Scholar 

  6. Afify N. A new method to study the crystallization or chemical reaction kinetics using thermal analysis technique. J Phys Chem Solids. 2008;69(7):1691–7.

    Article  CAS  Google Scholar 

  7. Aly KA, Saddeek YB, Dahshan A. Effect of WO3 on the glass transition and crystallization kinetics of borotellurite glasses. Philos Mag. 2010;90(33):4429–41.

    Article  CAS  Google Scholar 

  8. Aly KA, Dahshan A, Abdel-Rahim FM. Thermal stability of Ge-As-Te-In glasses. J Alloy Compd. 2009;470(1–2):574–9.

    Article  CAS  Google Scholar 

  9. Aly KA, Saddeek YB, Dahshan A. Structure and crystallization kinetics of manganese lead tellurite glasses. J Therm Anal Calorim. 2015;119(2):1215–24. doi:10.1007/s10973-014-4225-1.

    Article  CAS  Google Scholar 

  10. Aly KA, Dahshan A, Saddeek YB. Effect of MoO3 additions on the thermal stability and crystallization kinetics of PbO-Sb2O3-As2O3 glasses. J Therm Anal Calorim. 2010;100(2):543–9.

    Article  CAS  Google Scholar 

  11. Fadel M, Sedeek K, Hegab NA. Effect of Sn content on the electrical and optical properties of Ge1-xSnxSe3 glasses. Vacuum. 2000;57(3):307–17. doi:10.1016/S0042-207X(00)00144-5.

    Article  CAS  Google Scholar 

  12. Thakur A, Sharma V, Saini GSS, Goyal N, Tripathi SK. Effect of light intensity and temperature on the recombination mechanism in a-(Ge20Se80)99.5Cu0.5 thin film. J Phys D Appl Phys. 2005;38(12):1959–65.

    Article  CAS  Google Scholar 

  13. Tripathi SK, Sharma V, Thakur A, Sharma J, Saini GSS, Goyal N. Effect of Sb additive on the electrical properties of Se-Te alloy. J Non-Cryst Solids. 2005;351(30–32):2468–73.

    Article  CAS  Google Scholar 

  14. Suri N, Bindra KS, Thangaraj R. Electrical conduction and photoconduction in Se80-xTe20Bix thin films. J Phys: Condens Matter. 2006;18(39):9129–34.

    CAS  Google Scholar 

  15. El-Shair HT, El-Nahass MM, Fouad SS. Electrical properties of thin GexSe1-x amorphous films. Vacuum. 1991;42(3):201–2.

    Article  CAS  Google Scholar 

  16. Choudhary N, Kumar A. Dielectric relaxation in glassy Se100-xSbx. Turk J Phys. 2005;29(2):119–25.

    CAS  Google Scholar 

  17. Dahshan A, Aly KA. Determination of the thickness and optical constants of amorphous Ge-Se-Bi thin films. Philos Mag. 2009;89(12):1005–16.

    Article  CAS  Google Scholar 

  18. Maharjan NB, Bhandari D, Saxena NS, Paudyal DD, Husain M. Kinetic studies of bulk Se85-xTe15Sbx glasses with x = 0, 2, 4, 6, 8 and 10. Phys Status Solidi (A) Appl Res. 2000;178(2):663–70.

    Article  CAS  Google Scholar 

  19. Dahshan A, Aly KA. Characterization of new quaternary Ge20Se60Sb20-XAgx (0 ≤ x ≤ 20 at.%) glasses. J Non-Cryst Solids. 2015;408:62–5.

    Article  CAS  Google Scholar 

  20. Aly KA, Amer HH, Dahshan A. Optical constants of thermally evaporated Se-Sb-Te films using only their transmission spectra. Mater Chem Phys. 2009;113(2–3):690–5.

    Article  CAS  Google Scholar 

  21. Aly KA, Abdel Rahim FM, Dahshan A. Thermal analysis and physical properties of Bi-Se-Te chalcogenide glasses. J Alloy Compd. 2014;593:283–9. doi:10.1016/j.jallcom.2014.01.057.

    Article  CAS  Google Scholar 

  22. Avrami M. Kinetics of phase change. I: general theory. J Chem Phys. 1939;7(12):1103–12.

    Article  CAS  Google Scholar 

  23. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57(4):4.

    Article  Google Scholar 

  24. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13(2):283–92. doi:10.1007/BF01912301.

    Article  CAS  Google Scholar 

  25. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135:416–58.

    Google Scholar 

  26. Bansal NP, Doremus RH. Surface crystallization of a fluoride glass. J Am Ceram Soc. 1983;66(8):c132–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal A. Aly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, K.A. Crystallization study of Se86Sb14 glass. J Therm Anal Calorim 129, 709–714 (2017). https://doi.org/10.1007/s10973-017-6283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6283-7

Keywords

Navigation