Skip to main content
Log in

Glass transition and crystallization kinetics of Se98−xCd2Inx (x = 0, 2, 6 and 10) glassy alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The calorimetric parameters of glassy Se98−xCd2Inx (x = 0, 2, 6 and 10) alloys were investigated using differential scanning calorimetry (DSC) under non-isothermal conditions at different heating rates of 5, 10, 15 and 20 K min−1. The composition dependencies of activation energy of glass transitions (E g), crystallization activation energy (E c), fragility index (F), Hruby number (K gl) and rate constant (K p) were evaluated from DSC curves. Results indicate that kinetic parameter varies with In content in Cd–Se glassy matrix. It is observed that crystallization activation energy (E c) and K p are minimum and K gl is maximum for Se92Cd2In6 glass. Therefore, Se92Cd2In6 glass is the most thermally stable glass and has highest glass-forming ability in this series. It can be explained by chemical bond theory of solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wagner T, Frumar M, Suskova V. Photoenhanced dissolution and lateral diffusion of Ag in amorphous As–S layers. J Non-Cryst Solids. 1991;128:197–207.

    Article  CAS  Google Scholar 

  2. Ramesh K, Asokan S, Sangunni KS, Gopal ESR. Glass formation in germanium telluride glasses containing metallic additives. J Phys Chem Solids. 2000;61:95–101.

    Article  CAS  Google Scholar 

  3. Upadhyay AN, Tiwari RS, Mehta N, Singh K. Enhancement of electrical, thermal and mechanical properties of carbon nanotube additive Se85Te10Ag5 glassy composites. Mater Lett. 2014;136:445–8.

    Article  CAS  Google Scholar 

  4. Elliot SR. Physics of amorphous materials. 2nd ed. London: Longman; 1991.

    Google Scholar 

  5. Asobe M. Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching. Opt Fiber Technol. 1997;3:142–8.

    Article  Google Scholar 

  6. Fugimori S, Yagi S, Yamzaki H, Funakosky N. Crystallization process of Sb–Te alloy films for optical storage. J Appl Phys. 1988;64:1000–4.

    Article  Google Scholar 

  7. Katsuyama T, Satoh S, Atsumura HM. Scattering loss characteristics of selenide-based chogenide glass optical fibers. J Appl Phys. 1992;71:4132–6.

    Article  CAS  Google Scholar 

  8. Weszka J, Daniel P, Burian A, Burian AM, Nguyen AT. Raman scattering in In2Se3 and InSe2 amorphous films. J Non-Cryst Solids. 2000;265:98–104.

    Article  CAS  Google Scholar 

  9. Ram IS, Singh RK, Singh P, Singh K. Effect of Pb addition on dielectric relaxation in Se80In20 glassy system. J Alloy Compd. 2013;552:480–5.

    Article  CAS  Google Scholar 

  10. Wagner T, Frumar M. Optically induced diffusion and dissolution of metals in amorphous chalcogenide. In: Kolobov AV, editor. Photo induced metastability in amorphous semiconductors. Berlin: Wiley-VCH; 2003. p. 196–216.

    Google Scholar 

  11. Rajpure KY, Anarase PA, Lokhande CD, Bhosale CH. Photoelectrochemical studies on electrodeposited Cd–Fe–Se thin films. Phys Status Solidi A. 1999;172:415–23.

    Article  CAS  Google Scholar 

  12. Dhumure SS, Loknande CD. Studies on photoelectrochemical storage cells formed with chemically deposited CdSe and Ag2S electrodes. Sol Energy Mater Sol Cells. 1993;29:183–94.

    Article  CAS  Google Scholar 

  13. Froment M, Cachet H, Essaaidi H, Maurin G, Cortes R. Metal chalcogenide semiconductors growth from aqueous solutions. Pure Appl Chem. 1997;69:77–82.

    Article  CAS  Google Scholar 

  14. Jin W, Zhang K, Gao Z, Li Y, Yao L, Wang Y, Dai L. CdSe nanowire-based flexible devices: Schottky diodes, metal–semiconductor field-effect transistors, and inverters. ACS Appl Mater Interfaces. 2015;7:13131–6.

    Article  CAS  Google Scholar 

  15. Svoboda R, Brandová D, Málek J. Non-isothermal crystallization kinetics of GeTe4 infrared glass. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4937-x.

    Google Scholar 

  16. Svoboda R, Málek J. Crystallization mechanisms occurring in the Se–Te glassy system. J Therm Anal Calorim. 2015;119:155–66.

    Article  CAS  Google Scholar 

  17. Naqvi SF, Saxena NS. Kinetics of phase transition and thermal stability in Se80−xTe20Znx (x = 2, 4, 6, 8, and 10) glasses. J Therm Anal Calorim. 2012;108:1161–9.

    Article  CAS  Google Scholar 

  18. Heireche MM, Belhadji M, Hakiki NE. Non-isothermal crystallisation kinetics study on Se90-xIn10Sbx (x = 0, 1, 2, 4, 5) chalcogenide glasses. J Therm Anal Calorim. 2013;114(195):203.

    Google Scholar 

  19. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1988;88:11–34.

    Article  Google Scholar 

  20. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  21. Othman AA, Aly KA, Abousehly AM. Glass transition and crystallization kinetics of Sb14.5As29.5Se53.5Te2.5 amorphous solid. Phys Status Solidi (a). 2006;203:837–43.

    Article  CAS  Google Scholar 

  22. Strink MJ, Zahra AM. Determination of the transformation exponent s from experiments at constant heating rate. Thermochim Acta. 1997;298:179–89.

    Article  Google Scholar 

  23. Kumar S, Singh K. Glass transition, thermal stability and glass-forming tendency of Se90−xTe5Sn5Inx multi-component chalcogenide glasses. J Thermochimica Acta. 2012;528:32–7.

    Article  CAS  Google Scholar 

  24. Das GC, Bever MB, Uhlmann DR. Relaxation phenomena in amorphous selenium-tellurium alloys. J Non-Cryst Solids. 1972;7:251–70.

    Article  CAS  Google Scholar 

  25. El-Mously MK, El-Zaidia MM. Thermal and electrical conductivities during the devitrification of TeSe12.5 amorphous alloy. J Non-Cryst Solids. 1978;27:265–71.

    Article  CAS  Google Scholar 

  26. Abkovitz MA. In: Gerlach E, Grosse P, editors. The physics of Se and Te. Berlin: Springer; 1979. p. 178.

    Google Scholar 

  27. Kotkata MF, El-Mousl MK. A survey of amorphous Se–Te semiconductors and their characteristics aspects of crystallization. Acta Phys Hung. 1983;54:303–12.

    CAS  Google Scholar 

  28. Weiser K, Gambino RJ, Reinhold JA. Laser-beam writing on amorphous chalcogenide films: crystallization kinetics and analysis of amorphizing energy. Appl Phys Lett. 1973;22:48–9.

    Article  CAS  Google Scholar 

  29. Hruby A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 1972;22:1187–93.

    Article  CAS  Google Scholar 

  30. Kumar S, Singh K, Mehta N. Calorimetric studies of the glass transition phenomenon in glassy Se75Te15−xCd10Inx alloys using the non-isothermal DSC technique. Phys Scr. 2010;82:045601.

    Article  Google Scholar 

  31. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  32. Kasap SO, Yannacopoulos S. Apparent activation energy of the glass transformation in vitreous As2Se3 via heating and cooling differential scanning calorimetry scans. Phys Chem Glasses. 1990;31:71–4.

    CAS  Google Scholar 

  33. Abd El Ghani HA, Abd El Rahim MM, Wakkad MM, Abosehli A, Assraan N. Crystallization kinetics and thermal stability of some compositions of Ge–In–Se chalcogenide system. Phys B. 2006;381:156–63.

    Article  CAS  Google Scholar 

  34. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  35. Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.

    Article  CAS  Google Scholar 

  36. Viglis TA. Strong and fragile glasses: a powerful classification and its consequences. Phys Rev B. 1993;47:2882–5.

    Article  Google Scholar 

  37. Bohmer R, Angell CA. In: Richert R, Bluman A, editors. Disorder effects on relaxation processes. Berlin: Springer; 1994. p. 11–54.

    Chapter  Google Scholar 

  38. Matusita K, Konatsu T, Yorota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.

    Article  CAS  Google Scholar 

  39. Ram IS, Singh K. Thermal and mechanical properties of CNT-Se90−xTe10Agx (x = 0, 5 and 10) glassy composites. J Alloy Compd. 2013;576:358–62.

    Article  CAS  Google Scholar 

  40. Ram IS, Singh K. Effect of Pb additive on crystallization kinetics of Se80In20 glassy matrix. Phys B. 2012;407:3472–8.

    Article  CAS  Google Scholar 

  41. Pauling L. Die Natur der Chemischen Bindung. Weinheim: VCH; 1976. p. 80–9.

    Google Scholar 

  42. Dwivedi DK, Shukla N, Pathak HP. Study of crystallization kinetics in Se90Cd10−xInx chalcogenide glasses. Int J Res Eng Biosci. 2015;3:30–3.

    Google Scholar 

  43. Gao YQ, Wang W. On the activation energy of crystallization in metallic glasses. J Non-Cryst Solids. 1986;81:129–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank UGC, New Delhi, for providing financial assistance under the project grant UGC Project No. 42-812/2013(SR). We also wish to express our thanks to Professor O.N. Srivastava, Department of Physics, BHU, for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, K. Glass transition and crystallization kinetics of Se98−xCd2Inx (x = 0, 2, 6 and 10) glassy alloys. J Therm Anal Calorim 124, 675–682 (2016). https://doi.org/10.1007/s10973-015-5165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5165-0

Keywords

Navigation