Skip to main content
Log in

Relationship between melting behavior and morphological changes of semicrystalline polymers

Evidence from the case of poly(hexamethylene succinate)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study on the case of poly(hexamethylene succinate) is to provide a basis for a better understanding of the subtle relationship between melting behavior and morphological changes of semicrystalline polymers. The melting behavior and morphological changes of poly(hexamethylene succinate) during both isothermal secondary crystallization and annealing processes were investigated by DSC and SAXS. DSC results showed that, with increasing crystallization time or annealing time, the melting endotherm continuously shifted to higher temperature, which suggested that some minor structural or morphological changes must occur. However, almost no changes at all on the crystal thickness were observed from SAXS measurements. The observed evidence confirmed that the increase in the melting temperature is not attributed to crystal thickening but crystal perfection. More exactly, the rearrangement and smoothing of tie molecules at the folding surface result in the reduction of the fold surface free energy, which dominantly contributes to the increase in the melting peak temperature. The origin of the new endothermic peak observed after annealing at elevated temperature was also discussed. TMDSC results indicated that the annealing peak resulted from the enthalpy relaxation and devitrification transition of rigid amorphous fraction formed by the driving force of thermodynamic nonequilibrium, rather than usually regarded as the melting of thin lamellae or imperfect crystals formed by annealing secondary crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Betiti JP, Dumrleton JH. Relation between melting behavior and physical structure in polymers. J Polym Sci Part A. 1969;2(7):1033–57.

    Google Scholar 

  2. Groeninckx G, Reynaers H. Morphology and melting behavior of semicrystalline poly(ethylene terephthalate). II. Annealed PET. J Polym Sci Polym Phys Ed. 1980;18:1325–41.

    Article  CAS  Google Scholar 

  3. Zachmann HG. New insights into the structure and phase transitions of polymers. Nucl Instrum Methods Phys Res B. 1995;97:209–15.

    Article  CAS  Google Scholar 

  4. Marand H, Alizadeh A, Farmer R, Desai R, Velikov V. Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 2. Poly(arylene ether ether ketone). Macromolecules. 2000;33:3392–403.

    Article  CAS  Google Scholar 

  5. Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci. 2009;34:605–40.

    Article  CAS  Google Scholar 

  6. Castillo RV, Müller AJ. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog Polym Sci. 2009;34:516–60.

    Article  CAS  Google Scholar 

  7. Zhang Y, Li H, An L, Jiang S. Progress in studies on structure and relaxation behavior of the amorphous phase in crystalline polymers. Acta Polym Sin. 2013;4:462–72.

    Google Scholar 

  8. Chen Z, Hay JN, Jenkins MJ. The effect of secondary crystallization on melting. Eur Polym J. 2013;49:2697–703.

    Article  CAS  Google Scholar 

  9. Toda A, Androsch R, Schick C. Insights into polymer crystallization and melting from fast scanning chip calorimetry. Polymer. 2016;91:239–63.

    Article  CAS  Google Scholar 

  10. Zhou C, Li H, Zhang W, Li J, Jiang S. Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements. Polymer. 2016;90:111–21.

    Article  CAS  Google Scholar 

  11. Lee Y, Porter RS. Double-melting behavior of poly(ether ether ketone). Macromolecules. 1987;20:1336–41.

    Article  CAS  Google Scholar 

  12. Yeh JT, Runt J. Multiple melting in annealed poly(butlene terephthalate). J Polym Sci Part B Polym Phys. 1989;27:1543–50.

    Article  CAS  Google Scholar 

  13. Nichols ME, Robertson RE. The origin of multiple melting endotherms in the thermal analysis of polymers. J Polym Sci Part B Polym Phys. 1992;30:305–7.

    Article  CAS  Google Scholar 

  14. Nichols ME, Robertson RE. The multiple melting endotherms from poly(butylene terephthalate). J Polym Sci Part B Polym Phys. 1992;30:755–68.

    Article  CAS  Google Scholar 

  15. Tan S, Su A, Li W, Zhou E. New insight into melting and crystallization behavior in semicrystalline poly(ethylene terephthalate). J Polym Sci Part B Polym Phys. 2000;38:53–60.

    Article  CAS  Google Scholar 

  16. Liu G, Zheng L, Zhang X, Li C, Jiang S, Wang D. Reversible lamellar thickening induced by crystal transition in poly(butylene succinate). Macromolecules. 2012;45:5487–93.

    Article  CAS  Google Scholar 

  17. Konishi T, Sakatsuji W, Fukao K, Miyamoto Y. Temperature dependence of lamellar thickness in isothermally crystallized poly(butylene terephthalate). Macromolecules. 2016;49:2272–80.

    Article  CAS  Google Scholar 

  18. Liang Y, Lee HS. Conformational identification and phase transition behavior of poly(trimethylene 2,6-naphthalate) α-form modification. Macromolecules. 2015;48:5697–705.

    Article  CAS  Google Scholar 

  19. Cui Z, Qiu Z. Thermal properties and crystallization kinetics of poly(butylene suberate). Polymer. 2015;67:12–9.

    Article  CAS  Google Scholar 

  20. Arandia I, Mugica A, Zubitur M, Arbe A, Liu G, Wang D, Mincheva R, Dubois P, Müller AJ. How composition determines the properties of isodimorphic poly(butylene succinate-ran-butylene azelate) random biobased copolymers: from single to double crystalline random copolymers. Macromolecules. 2015;48:43–57.

    Article  CAS  Google Scholar 

  21. Wang ZG, Hsiao BS, Sauer BB, Kampert WG. The nature of secondary crystallization in poly(ethylene terephthalate). Polymer. 1999;40:4615–27.

    Article  CAS  Google Scholar 

  22. Albrecht T, Strobl GR. Temperature-dependent crystalline-amorphous structures in linear polyethylene: surface melting and the thickness of the amorphous layers. Macromolecules. 1995;28:5827–33.

    Article  CAS  Google Scholar 

  23. Ivanov DA, Bar G, Dosiere M, Koch MH. A novel view on crystallization and melting of semirigid chain polymers: the case of poly(trimethylene terephthalate). Macromolecules. 2008;41:9224–33.

    Article  CAS  Google Scholar 

  24. Yang I, Liu C. Real-time SAXS and WAXS study of the multiple melting behavior of poly(ε-caprolactone). J Polym Sci Part B Polym Phys. 2010;48:1777–85.

    Article  CAS  Google Scholar 

  25. Righetti MC, Laus M, Di Lorenzo ML. Rigid amorphous fraction and melting behavior of poly(ethylene terephthalate). Colloid Polym Sci. 2014;292:1365–74.

    Article  CAS  Google Scholar 

  26. Flory PJ, Yoon DY, Dill KA. The interphase in lamellar semicrystalline polymers. Macromolecules. 1984;17:862–8.

    Article  CAS  Google Scholar 

  27. Kumar SK, Yoon DY. Lattice model for crystal-amorphous interphases in lamellar semicrystalline polymers: effects of tight-fold energy and chain incidence density. Macromolecules. 1989;22:3458–65.

    Article  CAS  Google Scholar 

  28. Xu H, Ince BS, Cebe P. Development of the crystallinity and rigid amorphous fraction in cold-crystallized isotactic polystyrene. J Polym Sci Part B Polym Phys. 2003;41:3026–36.

    Article  CAS  Google Scholar 

  29. Androsch R, Wunderlich B. The link between rigid amorphous fraction and crystal perfection in cold-crystallized poly(ethylene terephthalate). Polymer. 2005;46:12556–66.

    Article  CAS  Google Scholar 

  30. Pieruccini M, Flores A, Nochel U, Di Marco G, Stribeck N, Calleja FB. The role of the amorphous phase in the re-crystallization process of cold-crystallized poly(ethylene terephthalate). Eur Phys J E. 2008;27:365–73.

    Article  CAS  Google Scholar 

  31. Di Lorenzo ML, Righetti MC, Cocca M, Wunderlich B. Coupling between crystal melting and rigid amorphous fraction mobilization in poly(ethylene terephthalate). Macromolecules. 2010;43:7689–94.

    Article  CAS  Google Scholar 

  32. Cser F, Hopewell J, Kosior E. Reversible melting of semi-crystalline polymers: 2. Annealing near to the melting point. J Therm Anal. 1998;53:493–508.

    Article  CAS  Google Scholar 

  33. Cser F, Hopewell J, Shanks RA. Reversible melting of thermally fractionated polyethylene. J Therm Anal. 1998;54:707–19.

    CAS  Google Scholar 

  34. Righetti MC, Di Lorenzo ML. Rigid amorphous fraction and multiple melting behavior in poly(butylene terephthalate) and isotactic polystyrene. J Therm Anal Calorim. 2016;126:521–30.

    Article  CAS  Google Scholar 

  35. Kim J, Nichols ME, Robertson RE. The annealing and thermal analysis of poly(butylene terephthalate). J Polym Sci Part B Polym Phys. 1994;32:887–99.

    Article  CAS  Google Scholar 

  36. Marchese P, Celli A, Fiorini M, Gabaldi M. Effects of annealing on crystallinity and phase behaviour of PET/PC block copolymers. Eur Polym J. 2003;39:1081–9.

    Article  CAS  Google Scholar 

  37. Abou-Kandil AI, Windle AH. The development of microstructure in oriented polyethylene terephthalate (PET) during annealing. Polymer. 2007;48:5069–79.

    Article  CAS  Google Scholar 

  38. Bai H, Luo F, Fu Q. New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene. Polymer. 2011;52:2351–60.

    Article  CAS  Google Scholar 

  39. Wei Z, Song P, Zhou C, Chen G, Chang Y, Li J, Zhang W, Liang J. Insight into the annealing peak and microstructural changes of poly(l-lactic acid) by annealing at elevated temperatures. Polymer. 2013;54:3377–84.

    Article  CAS  Google Scholar 

  40. Albrecht T, Strobl G. Temperature-dependent crystalline-amorphous structures in isotactic polypropylene: small-angle X-ray scattering analysis of edge-bounded two-phase systems. Macromolecules. 1995;28:5267–73.

    Article  CAS  Google Scholar 

  41. Schmidtke J, Strobl G, Thurn-Albrecht T. A four-state scheme for treating polymer crystallization and melting suggested by calorimetric and small angle X-ray scattering experiments on syndiotactic polypropylene. Macromolecules. 1997;30:5804–21.

    Article  CAS  Google Scholar 

  42. Hsiao BS, Wang Z, Yeh F, Gao Y, Sheth KC. Time-resolved X-ray studies of structure development in poly(butylene terephthalate) during isothermal crystallization. Polymer. 1999;40:3515–23.

    Article  CAS  Google Scholar 

  43. Li L, Koch MHJ, de Jeu WH. Crystalline structure and morphology in nylon-12: a small- and wide-angle X-ray scattering study. Macromolecules. 2003;36:1626–32.

    Article  CAS  Google Scholar 

  44. Pepels MPF, Hansen MR, Han G, Duchateau R. From polyethylene to polyester: influence of ester groups on the physical properties. Macromolecules. 2013;46:7668–77.

    Article  CAS  Google Scholar 

  45. Chu B, Hsiao BS. Small-angle X-ray scattering of polymers. Chem Rev. 2001;101:1727–61.

    Article  CAS  Google Scholar 

  46. Russell TP, Koberstein JT. Simultaneous differential scanning calorimetry and small-angle X-ray scattering. J Polym Sci Polym Phys Ed. 1985;23:1109–15.

    Article  CAS  Google Scholar 

  47. Lee CH, Saito H, Inoue T, Nojima S. Time-resolved small-angle X-ray scattering studies on the crystallization of poly(ethylene terephthalate). Macromolecules. 1996;29:7034–7.

    Article  CAS  Google Scholar 

  48. Lee B, Shin TJ, Lee SW, Yoon J, Kim J, Ree M. Secondary crystallization behavior of poly(ethylene isophthalate-co-terephthalate): time-resolved small-angle X-ray scattering and calorimetry studies. Macromolecules. 2004;37:4174–84.

    Article  CAS  Google Scholar 

  49. Ivanov DA, Hocquet S, Dosiµere M, Koch MHJ. Exploring the melting of a semirigid-chain polymer with temperature-resolved small-angle X-ray scattering. Eur Phys J E. 2004;13:363–78.

    Article  CAS  Google Scholar 

  50. Canetti M, Bertini F. Crystalline and supermolecular structure evolution of poly(ethylene terephthalate) during isothermal crystallization and annealing treatment by means of wide and small angle X-ray investigations. Eur Polym J. 2010;46:270–6.

    Article  CAS  Google Scholar 

  51. Li X, Hong Z, Sun J, Geng Y, Huang Y. Identifying the phase behavior of biodegradable poly(hexamethylene succinate-co-hexamethylene adipate) copolymers with FTIR. J Phys Chem B. 2009;113:2695–704.

    Article  CAS  Google Scholar 

  52. Wei Z, Zhou C, Yu Y, Li Y. Poly(hexamethylene succinate) copolyesters containing phosphorus pendent group: retarded crystallization and solid-state microstructure. Polymer. 2015;71:31–42.

    Article  CAS  Google Scholar 

  53. Strobl GR, Schneider MJ. Direct evaluation of the electro density correlation function of partially crystalline polymers. J Polym Sci Polym Phys Ed. 1980;18:1343–59.

    Article  CAS  Google Scholar 

  54. Strobl GR, Schneider MJ, Voigt-Martin IG. Model of partial crystallization and melting derived from small-angle X-ray scattering and electron microscopic study on low-density polyethylene. J Polym Sci Polym Phys Ed. 1980;18:1361–81.

    Article  CAS  Google Scholar 

  55. Kong Y, Hay JN. Multiple melting behaviour of poly(ethylene terphthalate). Polymer. 2003;44:623–33.

    Article  CAS  Google Scholar 

  56. Lauritzen JI Jr, Hoffman JD. Theory of formation of polymer crystals with folded chains in dilute solution. J Res Natl Bur Stand. 1960;A64:73.

    Article  Google Scholar 

  57. Sanchez IC, Peterlin A, Eby RK, McCrackin FL. Theory of polymer crystal thickening during annealing. J Appl Phys. 1974;45:4216–9.

    Article  CAS  Google Scholar 

  58. Ko TY, Woo EM. Changes and distribution of lamellae in the spherulites of poly(ether ether ketone) upon stepwise crystallization. Polymer. 1996;37:1167–75.

    Article  CAS  Google Scholar 

  59. Cser F, Hopewell JL, Tajne K, Shanks RA. Reversed annealing of thermal fractionated polyethylenes by TMDSC. J Therm Anal. 2000;61:687–700.

    Article  CAS  Google Scholar 

  60. Fontaine F, Ledent J, Groeninckx G, Reynaers H. Morphology and melting behaviour of semi-crystalline poly(ethylene terephthalate) 3. Quantification of crystal perfection and crystallinity. Polymer. 1982;23:185–91.

    Article  CAS  Google Scholar 

  61. Reading M, Elliott D, Hill VL. A new approach to the calorimetric investigation of physical and chemical transitions. J Therm Anal. 1993;40:949–55.

    Article  CAS  Google Scholar 

  62. Righetti MC, Tombari E. Crystalline, mobile amorphous and rigid amorphous fractions in poly(l-lactic acid) by TMDSC. Thermochim Acta. 2011;522:118–27.

    Article  CAS  Google Scholar 

  63. Wang X, Zhou J, Li L. Multiple melting behavior of poly(butylene succinate). Eur Polym J. 2007;43:3163–70.

    Article  CAS  Google Scholar 

  64. Bonnet M, Rogausch K-D, Petermann J. The endothermic “annealing peak” of poly(phenylene sulphide) and poly(ethylene terephthalate). Colloid Polym Sci. 1999;277:513–8.

    Article  CAS  Google Scholar 

  65. Cser F, Hopewell JL, Shanks RA. X-ray diffraction studies on reversed annealed polyethylenes. J Appl Polym Sci. 2001;81:340–9.

    Article  CAS  Google Scholar 

  66. Oka Y, Yao H, Saruyama Y. Temperature-modulated X-ray diffractometry applied to a study on calorimetric and structural change of semicrystalline poly(ethylene oxide). J Therm Anal Calorim. 2016;123:1883–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Program on Key Basic Research Program of China (973 Program No. 2015CB654700 (2015CB654701)), the National Science Foundation of China (No. U1508204) and the Fundamental Research Funds for the Central Universities (No. DUT16QY38).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Wei or Yang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Yu, Y., Zhou, C. et al. Relationship between melting behavior and morphological changes of semicrystalline polymers. J Therm Anal Calorim 129, 777–787 (2017). https://doi.org/10.1007/s10973-017-6255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6255-y

Keywords

Navigation