Skip to main content
Log in

Temperature-dependent AC electrical conductivity, thermal stability and different DC conductivity modelling of novel poly(vinyl cinnamate)/zinc oxide nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Novel nanocomposites based on poly(vinyl cinnamate) (PVCin)/zinc oxide (ZnO) were prepared by in situ polymerization method using different mass percentages of ZnO nanoparticles. The formation of nanoparticles in the composites was analysed by TEM, FESEM, XRD, DSC and TG measurements. The TEM and SEM images showed the uniform dispersion of nanoparticles within PVCin matrix. The results of XRD indicated that the metal oxide particles had entered into macromolecular chain of PVCin. The glass transition temperature of the composites was shifted towards higher temperature with the increase in concentration of ZnO nanoparticles. Thermal stability studies showed a remarkable increase in thermal resistance of composites, and the thermal stability increases with an increase in concentration of metal oxide particles. The alternate current (AC) electrical conductivity of prepared composite has been investigated at different temperature at various frequencies. The electrical conductivity was found to be increased with increasing temperature, and it obeys power law. The activation energy was determined from the AC conductivity. DC conductivity of all the composites was much higher than pure PVCin, and the conductivity increases with increase in the concentration of nanoparticles up to 7 mass% and thereafter the conductivity decreases with further addition particles. The experimental conductivity of nanocomposite was compared with different theoretical conductivity using Scarbrick, Bueche and McCullough equation. The conductivity values obtained from McCullough model showed the same trend as experimentally determined conductivity values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ramezanzadeh B, Attar MM, Farzam M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103:731–9.

    Article  CAS  Google Scholar 

  2. Janowska G, Mikolajczyk T, Olejnik M. Thermal properties and flammability of fibres made from polyimidoamide nanocomposite. J Therm Anal Calorim. 2007;88:843–9.

    Article  CAS  Google Scholar 

  3. Stefanescu O, Vlase G, Barbu M, Stefanescu M. Preparation of CuFe2O4/SiO2 nanocomposite starting from Cu(II)–Fe(III) carboxylates embedded in hybrid silica gels. J Therm Anal Calorim. 2013;113:1245–53.

    Article  CAS  Google Scholar 

  4. Mojumdar SC, Raki L. Preparation, thermal, spectral and microscopic studies of calcium silicate hydrate–poly(acrylic acid) nanocomposite materials. J Therm Anal Calorim. 2006;85:99–105.

    Article  CAS  Google Scholar 

  5. Jayakrishnan P, Ramesan MT. Studies on the effect of magnetite nanoparticles on magnetic, mechanical, thermal, temperature dependent electrical resistivity and DC conductivity modeling of poly(vinyl alcohol-co-acrylic acid)/Fe3O4 nanocomposites. Mater Chem Phys. 2017;186:513–22.

    Article  CAS  Google Scholar 

  6. Tjong S, Liang G. Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater Chem Phys. 2006;100:1–5.

    Article  CAS  Google Scholar 

  7. Erceg M, Kresic I, Jakic M, Andricic B. Kinetic analysis of poly(ethylene oxide)/lithium montmorillonite nanocomposites. J Therm Anal Calorim. 2017;127:789–97.

    Article  CAS  Google Scholar 

  8. Wu SY, Tong X, Nie CD, Peng DQ, Gong SG, Wang ZQ. The effects of various carbon nanofillers on the thermal properties of paraffin for energy storage applications. J Therm Anal Calorim. 2016;124:181–8.

    Article  CAS  Google Scholar 

  9. Liufu SC, Xiao HN, Li YP. Thermal analysis and degradation mechanism of polyacrylate/Zno nanocomposites. Polym Degrad Stab. 2005;87:103–10.

    Article  CAS  Google Scholar 

  10. Ramesan MT. Fabrication characterization and properties of poly(ethylene-co-vinyl acetate)/magnetite nanocomposites. J Appl Polym Sci. 2014;131:3681–9.

    Article  Google Scholar 

  11. Xiong HM, Zhao X, Chen JS. New polymer–inorganic composites: PEO–ZnO and PEO–Zno–LiClO4 films. J Phys Chem B. 2001;105:10169–74.

    Article  CAS  Google Scholar 

  12. Qi Y, Zhang J, Qiu S, Sun L, Xu F, Zhu M, Ouyang L, Sun D. Thermal stability, decomposition and glass transition behavior of PANI/NiO composites. J Therm Anal Calorim. 2009;98:533–7.

    Article  CAS  Google Scholar 

  13. Tang E, Cheng G, Pang X, Ma X, Xing F. Synthesis of nano-Zno/poly(methyl mathacrylate composite microsphere through emulsion polymerization and its UV-shielding property. Colloid Polym Sci. 2006;284:422–8.

    Article  CAS  Google Scholar 

  14. Ahmed J, Arfat YA, Aguirre CE, Auras R. Thermal properties of ZnO and bimetallic Ag–Cu alloy reinforced poly(lactic acid) nanocomposite films. J Therm Anal Calorim. 2016;125:205–14.

    Article  CAS  Google Scholar 

  15. Xiong M, Gu G, You B, Wu L. Preparation and characterization of poly(styrene butyl acrylate) latex/nano-Zno nanocomposites. J Appl Polym Sci. 2003;90:1923–31.

    Article  CAS  Google Scholar 

  16. Elashmawi I, Hakeem N, Marei L, Hanna F. Structure and performance of ZnO/PVC nanocomposites. Phys B. 2010;405:4163–9.

    Article  CAS  Google Scholar 

  17. Kim J, Hong SM, Kwak S, Seo Y. Physical properties of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes. Phys Chem Chem Phys. 2009;11:10851–9.

    Article  CAS  Google Scholar 

  18. Ramesan MT, Pradyumnan PP. Synthesis and electrical conductivity studies of poly(methyl methacrylate) in presence transition metal ions. AIP Conf Proc. 2011;1391:658–60.

    Article  CAS  Google Scholar 

  19. Zoromba MS, Hosn NM. Synthesis of Fe2O3, Co3O4 and NiO nanoparticles by thermal decomposition of doped polyaniline precursors. J Therm Anal Calorim. 2015;119:605–11.

    Article  CAS  Google Scholar 

  20. Ramesan MT. Poly(ethylene-co-vinyl acetate)/magnetite nanocomposites: interaction of some liquid fuels, thermal and oil resistance studies. Polym Polym Compos. 2015;23:85–92.

    CAS  Google Scholar 

  21. Suhailath K, Ramesan MT, Naufal B, Periyat P, Jasna VC, Jayakrishnan P. Synthesis, characterisation, flame, thermal and electrical properties of poly(n-butyl methacrylate)/titanium dioxide nanocomposites. Polym Bull. 2016;. doi:10.1007/s00289-016-1737-9.

    Google Scholar 

  22. Singh S, Srivastava P, Kapoor IPS, Singh G. Preparation, characterization, and catalytic activity of rare earth metal oxide nanoparticles. J Therm Anal Calorim. 2013;111:1073–82.

    Article  CAS  Google Scholar 

  23. Ramesan MT. Synthesis, characterization and properties of new conducting polyaniline/copper sulphide nanocomposites. Polym Eng Sci. 2014;54:438–45.

    Article  CAS  Google Scholar 

  24. Ramesan MT. Synthesis, characterization and conductivity studies of polypyrrole/copper sulfide nanocomposites. J Appl Polym Sci. 2013;128:1540–6.

    CAS  Google Scholar 

  25. Zabihi O, Khodabandeh A. Understanding of thermal/thermo-oxidative degradation kinetics of polythiophene nanoparticles. J Therm Anal Calorim. 2013;112:1507–13.

    Article  CAS  Google Scholar 

  26. Jayakrishnan P, Pradyumnan PP, Ramesan MT. Thermal and electrical properties of polyindole/magnetite nanocomposites. Chemist. 2016;89:27–32.

    Google Scholar 

  27. Kim HT, Park JK. Thermal degradation of poly(vinyl cinnamate). Polym Bull. 1998;41:325–31.

    Article  CAS  Google Scholar 

  28. Du H, Zhang J. The synthesis of poly(vinyl cinnamates) with light-induced shape fixity properties. Sens Actuators A. 2012;179:114–20.

    Article  CAS  Google Scholar 

  29. Gaur MS, Indolia AP. Thermally stimulated dielectric properties of polyvinylidenefluoride–zinc oxide nanocomposites. J Therm Anal Calorim. 2011;103:977–85.

    Article  CAS  Google Scholar 

  30. Jayakrishnan P, Ramesan MT. Synthesis, characterization, electrical conductivity and material properties of magnetite/polyindole/poly(vinyl Alcohol) blend nanocomposites. J Inorg Organomet Polym. 2017;27:323–33.

    Article  CAS  Google Scholar 

  31. Ramesan MT, George A, Jayakrishnan P, Kalaprasad G. Role of pumice particles in the thermal, electrical and mechanical properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) composites. J Therm Anal Calorim. 2016;126:511–9.

    Article  CAS  Google Scholar 

  32. Ramesan MT, Jayakrishnan P. Role of nickel oxide nanoparticles on magnetic, thermal and temperature dependent electrical conductivity of novel poly(vinyl cinnamate) based nanocomposites: applicability of different conductivity models. J Inorg Organomet Polym. 2017;27:143–53.

    Article  CAS  Google Scholar 

  33. Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol. 2003;63:1637–46.

    Article  CAS  Google Scholar 

  34. Loiu C, Kenji O, Masato S, Shinnosuke M. Anisotropic conductivity-temperature characteristic of solution-cast poly(3-hexylthiophene) films. Synth Met. 2006;156:1362–7.

    Article  Google Scholar 

  35. Gupta K, Chakaraborty G, Jana PC, Meikap AK. Direct current conductivity of polyaniline-cobalt chloride nanocomposite prepared by wet chemical. J Phys Sci. 2009;13:251–60.

    Google Scholar 

  36. Nihmath A, Ramesan MT. Development, characterization and conductivity studies of chlorinated EPDM. AIP Conf Proc. 2014;1620:353–9.

    Article  CAS  Google Scholar 

  37. McCullough RL. Generalized combining rules for predicting transport properties of composite materials. Compos Sci Technol. 1985;22:3–21.

    Article  CAS  Google Scholar 

  38. Bueche F. Electrical resistivity of conducting particles in an insulating matrix. J Appl Phys. 1972;43:4837–8.

    Article  CAS  Google Scholar 

  39. Sohi NJS, Bhadra S, Khastgi D. The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon. 2011;49:1349–61.

    Article  CAS  Google Scholar 

  40. Scarisbrick RM. Electrical conducting mixtures. J Phys D Appl Phys. 1973;6:2098–110.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thanks Prof. P. Pradeep, Department of Physics, NIT Calicut for providing necessary facilities in the department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesan, M.T., Jayakrishnan, P., Sampreeth, T. et al. Temperature-dependent AC electrical conductivity, thermal stability and different DC conductivity modelling of novel poly(vinyl cinnamate)/zinc oxide nanocomposites. J Therm Anal Calorim 129, 135–145 (2017). https://doi.org/10.1007/s10973-017-6140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6140-8

Keywords

Navigation