Skip to main content
Log in

Effects of silver nanoparticles on the thermal properties of polyethylene matrix nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current research, silver (Ag) nanoparticles were synthesized by chemical reduction method and polyethylene–silver nanocomposites containing different Ag contents (0–30 mass%) were fabricated by mechanical milling method. All samples were characterized by X-ray diffraction, UV–Vis spectroscopy, scanning electron microscopy, and transmission electron microscopy. Thermal behavior of these nanocomposites was investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis. The results of the DSC tests showed that although the melting temperature (T m) of PE and its nanocomposites has the same value, the crystallization temperature (T c) increases by addition of silver nanoparticles (Ag NPs) in the PE matrix, indicating that the Ag NPs act as nucleation sites. Also, crystallinity index of PE and its nanocomposites was calculated. Results show that the crystallization index changes from 45.74 to 57.36% as Ag NPs content increases from 0 to 30%. The mass loss of nanocomposites was lower than that of the pure PE, which could be attributed to the undecomposed Ag NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Song KC, Lee SM, Park TS, Lee BS. Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J Chem Eng. 2009;26:153–5.

    Article  CAS  Google Scholar 

  2. Tamboli MS, Kulkarni MV, Patil RH, Gade WN, Navale SC, Kale BB. Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf B. 2012;92:35–41.

    Article  CAS  Google Scholar 

  3. Aalaie J, Mirali M, Motamedi P, Hossein Khanli H. On the effect of nanosilver reinforcement on the mechanical, physical, and antimicrobial properties of polyethylene blown films. J Macromo Sci B Phys. 2011;50:1873–81.

    Article  CAS  Google Scholar 

  4. Gasaymeh SS, Radiman S, Heng LY, Saion E, Mohamed Saeed GH. Synthesis and characterization of silver/polyvinilpirrolidone (Ag/PVP) nanoparticles using gamma irradiation techniques. Am J Appl Sci. 2010;7:892–901.

    Article  CAS  Google Scholar 

  5. An J, Luo Q, Li M, Wang D, Li X, Yin R. A facile synthesis of high antibacterial polymer nanocomposite containing uniformly dispersed silver nanoparticles. Colloid Polym Sci. 2015;293:1997–2008.

    Article  CAS  Google Scholar 

  6. Dorigato A, Pegoretti A. Fracture behaviour of linear low density polyethylene—fumed silica nanocomposites. Eng Fract Mech. 2012;79:213–24.

    Article  Google Scholar 

  7. He FA, Zhang LM. New polyethylene nanocomposites prepared by in situ polymerization method using nickel a-diimine catalyst supported on organo-modified ZnAl layered double hydroxide. Compos Sci Technol. 2007;67:3226–32.

    Article  CAS  Google Scholar 

  8. Abareshi M, Zebarjad SM, Goharshadi EK. Crystallinity behavior of MDPE_Clay nanocomposites fabricated using ball milling method. J Compos Mater. 2009;43:2821–30.

    Article  CAS  Google Scholar 

  9. Abareshi M, Zebarjad SM, Goharshadi EK. Study of the morphology and granulometry of polyethylene–clay nanocomposite powders. J Vinyl Addit Techn. 2010;16:90–7.

    Article  CAS  Google Scholar 

  10. Singho ND, Che Lah NA, Johan MR, Ahmad R. Enhancement of the refractive index of silver nanoparticles in poly (methyl methacrylate). IJRET. 2012;1:231–4.

    Google Scholar 

  11. Mbhele ZH, Salemane MG, Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS. Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater. 2003;15:5019–24.

    Article  CAS  Google Scholar 

  12. Vodnik VV, Vuković JV, Nedeljković JM. Synthesis and characterization of silver-poly(methylmethacrylate) nanocomposites. J Colloid Polym Sci. 2009;287:847–51.

    Article  CAS  Google Scholar 

  13. Vodnik VV, Bozanic DK, Dzunuzovic E, Vukovic J, Nedeljkovic JM. Thermal and optical properties of silver–poly(methylmethacrylate) nanocomposites prepared by in situ radical polymerization. Eur Polym J. 2010;46:137–44.

    Article  CAS  Google Scholar 

  14. Siddiqui MN, Redhwi HH, Vakalopoulou E, Tsagkalias I, Ioannidou MD, Achilias DS. Synthesis, characterization and reaction kinetics of PMMA/silver nanocomposites prepared via in situ radical polymerization. Eur Polym J. 2015;72:256–69.

    Article  CAS  Google Scholar 

  15. Choudhury A. Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sens Actuators B. 2009;138:318–25.

    Article  CAS  Google Scholar 

  16. Hong HK, Park CK, Gong MS. Preparation of Ag/PVP Nanocomposites as a solid precursor for silver nanocolloids solution. Bull Korean Chem Soc. 2010;31:1252–6.

    Article  CAS  Google Scholar 

  17. Ilic V, Saponjic Z, Vodnik V, Molina R, Dimitrijevic S, Jovancic P, Nedeljkovic J, Radetic M. Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci. 2009;44:3983–90.

    Article  CAS  Google Scholar 

  18. Kumar R, Münstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 2005;26:2081–8.

    Article  CAS  Google Scholar 

  19. Damm C, Münstedt H, Rosch A. Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci. 2007;42:6067–73.

    Article  CAS  Google Scholar 

  20. Radheshkumar C, Munstedt H. Antimicrobial polymers from polypropylene/silver composites—Ag+ release measured by anode stripping voltammetry. React Funct Polym. 2006;66:780–8.

    Article  CAS  Google Scholar 

  21. Sang YY, Sung HG. Preparation and characterization of polypropylene/silver nanocomposite fibers. Polym Int. 2003;52:1053–7.

    Article  Google Scholar 

  22. Karbownik I, Rac O, Fiedot M, Suchorska-Wozniak P, Teterycz H. In situ preparation of silver–polyacrylonitrile nanocomposite fibres. Eur Polym J. 2015;69:385–95.

    Article  CAS  Google Scholar 

  23. Falleta E, Bonini M, Fratini E, Nostro AL, Pesavento G, Becheri A, Nostro PL, Canton P, Baglioni P. Clusters of poly(acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C. 2008;112:11758–66.

    Article  Google Scholar 

  24. Dirix Y, Bastiaansen C, Caseri W, Smith P. Preparation, structure and properties of uniaxially oriented polyethylene-silver nanocomposites. J Mater Sci. 1999;34:3859–66.

    Article  CAS  Google Scholar 

  25. Sanchez-Valdes S, Ortega-Ortiz H, Ramosde Valle LF, Medellın-Rodrıguez FJ, Guedea-Miranda R. Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. J Appl Polym Sci. 2009;111:953–62.

    CAS  Google Scholar 

  26. Zapata PA, Tamayo L, Paez M, Cerda E, Azocar I, Rabagliati FM. Nanocomposites based on polyethylene and nanosilver particles produced by metallocenic “in situ” polymerization: synthesis, characterization, and antimicrobial behavior. Eur Polym J. 2011;47:1541–9.

    Article  CAS  Google Scholar 

  27. Jokar M, Rahman RA, Ibrahim NA, Abdullah LC, Tan CP. Melt production and antimicrobial efficiency of low density polyethylene (LDPE)-silver nanocomposite film. Food Bioprocess Technol. 2012;5:719–28.

    Article  CAS  Google Scholar 

  28. Jouni M, Boudenne A, Boiteux G, Massardier V, Garnier B, Serghei A. Electrical and thermal properties of polyethylene/silver nanoparticle composites. Polym Compose. 2013;34:778–86.

    Article  CAS  Google Scholar 

  29. Dehnavi AS, Aroujalian A, Raisi A, Fazel S. Preparation and characterization of polyethylene/silver nanocomposite films with antibacterial activity. J Appl Polym Sci. 2013;127:1180–90.

    Article  CAS  Google Scholar 

  30. Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X, Thompson GE, Rabagliati FM, Páez MA. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C. 2014;40:24–31.

    Article  CAS  Google Scholar 

  31. Shafrina AH, Malco CCR, Michael AM, Enda C, Joseph PK. Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packag Shelf Life. 2015;4:26–35.

    Article  Google Scholar 

  32. Ebrahimi Sadrabadi T, Zebarjad SM, Vahdati Khaki J. On the dependence of avrami indexes of MDPE on milling time. Polym Plast Technol Eng. 2010;46:1284–8.

    Article  Google Scholar 

  33. Koo CM, Ham HT, Choi MH, Kim SO, Chung IJ. Characteristics of polyvinylpyrrolidone-layered silicate nanocomposites prepared by attrition ball milling. Polymer. 2003;44:681–9.

    Article  CAS  Google Scholar 

  34. Das D, Samanta A, Chattopadhyay PP. Synthesis of bulk nano-Al2O3 dispersed Cu-matrix composite using ball milled precursor. Mater Manuf Processes. 2007;22:517–25.

    Google Scholar 

  35. Khrussanova M, Mandzhukova T, Grigorova E, Khristov M, Peshev P. Hydriding properties of the nanocomposite 85 wt% Mg–15 wt% Mg2Ni0.8Co0.2 obtained by ball milling. J Mater Sci. 2007;42:3338–42.

    Article  CAS  Google Scholar 

  36. Sahebian S, Zebarjad SM, Vahdati Khaki J, Sajjadi SA. The effect of nano-sized calcium carbonate on thermodynamic parameters of HDPE. J Mater Process Technol. 2009;209:1310–7.

    Article  CAS  Google Scholar 

  37. Runt JP, Mark HF, Bikales NM, et al. Encyclopedia of polymer science and engineering. New York: Wiley; 1986.

    Google Scholar 

  38. Sovizi MR, Fakhrpour Gh, Bagheri S, Bardajee GhR. Non-isothermal dehydration kinetic study of a new swollen biopolymer silver nanocomposite hydrogel. J Therm Anal Calorim. 2015;121:1383–91.

    Article  CAS  Google Scholar 

  39. Omrani A, Rostami AA, Ravari F. Advanced isoconversional and master plot analyses on solid-state degradation kinetics of a novel nanocomposite. J Therm Anal Calorim. 2013;111:677–83.

    Article  CAS  Google Scholar 

  40. Mi HY, Li Z, Turng LS, Sun Y, Gong Shaoqin G. Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: thermal, mechanical, and dielectric properties. Mater Des. 2014;56:398–404.

    Article  CAS  Google Scholar 

  41. Liu J, Lee JB, Kim DH, Kim Y. Preparation of high concentration of silver colloidal nanoparticles in layered laponite sol. Colloids Surf A Physicochem Eng. 2007;302:276–9.

    Article  CAS  Google Scholar 

  42. Bonsak J, Mayandi J, Thøgersen A, Marstein ES, Mahalingam U. Chemical synthesis of silver nanoparticles for solar cell applications. Phys Status Solidi C. 2011;8:924–7.

    Article  CAS  Google Scholar 

  43. Kim JY, Park HS, Kim SH. Multiwall-carbon-nanotube-reinforced poly(ethylene terephthalate) nanocomposites by melt compounding. J Appl Polym Sci. 2007;103:1450–7.

    Article  CAS  Google Scholar 

  44. Noroozi M, Zebarjad SM. Effects of multiwall carbon nanotubes on the thermal and mechanical properties of medium density polyethylene matrix nanocomposites produced by a mechanical milling method. J Vinyl Addit Technol. 2010;16:147–51.

    CAS  Google Scholar 

  45. Mosavian MTH, Bakhtiari A, Sahebian S. Influence of alumina particles on thermal behavior of high density polyethylene (HDPE). Polym Plast Technol Eng. 2012;51:214–9.

    Article  CAS  Google Scholar 

  46. Elksnite I, Merijs-Meri R, Reinholds I, Kalkis V, Zicans J, Kalnins M. Thermal analysis, mechanical and rheological behaviour of melt manufactured polyethylene/liquid crystal polymer blends. J Mater Sci. 2011;17:145–9.

    Google Scholar 

  47. Fortunati E, Armentano I, Zhou Q, Iannonia A, Saino E, Visai L, Bergulund LA, Kenny JM. Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym. 2012;87:1596–605.

    Article  CAS  Google Scholar 

  48. McNally T, Potschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP. Polyethylene multiwalled carbon nanotube composites. Polymer. 2005;46:8222–32.

    Article  CAS  Google Scholar 

  49. Ruan SL, Gao P, Yang XG, Yu TX. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer. 2003;44:5643–54.

    Article  CAS  Google Scholar 

  50. Ghorbani M, Soleimani Lashkenari M, Eisazadeh H. Synthesis and thermal stability studies of polyaniline/silver nanocomposite based on reduction of silver ions using polyaniline. High Perform Polym. 2011;23:513–7.

    Article  CAS  Google Scholar 

  51. Su N. Improving electrical conductivity, thermal stability, and solubility of polyaniline-polypyrrole nanocomposite by doping with anionic spherical polyelectrolyte brushes. Nanoscale Res Lett. 2015;10(301):1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Abareshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abareshi, M., Shahroodi, S.M. Effects of silver nanoparticles on the thermal properties of polyethylene matrix nanocomposites. J Therm Anal Calorim 128, 1117–1124 (2017). https://doi.org/10.1007/s10973-016-6036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6036-z

Keywords

Navigation