Skip to main content
Log in

The impact of conditions mimicking physiological environment on the thermal stability of aliphatic polycarbonate-based polyurethane elastomers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal stabilities of all-aliphatic thermoplastic polyurethane (PU) films, either three-component (made from polycarbonate-based macrodiol, diisocyanate-1,6-hexane and butane-1,4-diol) or four-component (containing in addition oligomeric d,l-lactide-based linker in PU backbone), were studied by using thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), auto-stepwise TG and TG coupled with FTIR (TG-FTIR). The evaluation of the influence of PU composition and time of the sample exposure to the environment mimicking physiological conditions (phosphate buffer saline at 37 °C) on the thermal characteristics was the main task of the study. The shapes of the mass loss curves of all studied PUs are almost identical, and the differences in thermal stabilities are relatively small. While the three-component PUs are thermally stable up to 280 °C in the minimum, the four-component PU starts to decompose at about 250 °C, due to the presence of the thermal-unstable d,l-lactide component. In all PU materials tested, the thermal stability is only slightly affected by the hydrolytic process. The safe technological processability till 200 °C together with the evolving of relatively safe main volatile compounds makes the polycarbonate-based PUs as suitable candidates for medical, bio-, package and similar applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. PBS—Phosphate-Buffered Saline contains monobasic potassium phosphate, sodium chloride, and dibasic sodium phosphate.

  2. For details, see e.g. Fig. 2 in Ref. [32].

  3. The rest PU samples tested have further T DTG maximum at ca 450 °C.

  4. TG was realized on fully dried samples. The mass loss of T4-1-1-12 was ca 5 mass% compared to T4-1-1-0.

References

  1. Hepburn C. Polyurethane elastomers. 2nd ed. London: Elsevier; 1992.

    Book  Google Scholar 

  2. Prisacariu C. Polyurethane elastomers: from morphology to mechanical aspects. Berlin: Springer; 2011.

    Book  Google Scholar 

  3. Petrović ZS, Ferguson J. Polyurethane elastomers. Prog Polym Sci. 1991;16:695–836.

    Article  Google Scholar 

  4. Sobczak M, Dębek C, Olędzka E, Nałęcz-Jawecki G, Kołodziejski WL, Rajkiewicz M. Segmented polyurethane elastomers derived from aliphatic polycarbonate and poly(ester-carbonate) soft segments for biomedical applications. J Polym Sci Pol Chem. 2012;50:3904–13.

    Article  CAS  Google Scholar 

  5. Rueda-Larraz L, Fernandez d’Arlas B, Tercjak A, Ribes A, Mondragon I, Eceiza A. Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. Eur Polym J. 2009;45:2096–109.

    Article  CAS  Google Scholar 

  6. Korley LTJ, Pate BD, Thomas EL, Hammond PT. Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer. 2006;47:3073–82.

    Article  CAS  Google Scholar 

  7. Javni I, Petrović ZS, Guo A, Fuller R. Thermal stability of polyurethanes based on vegetable oils. J Appl Polym Sci. 2000;77:1723–34.

    Article  CAS  Google Scholar 

  8. Kultys A, Rogulska M, Pikus S, Skrzypiec K. The synthesis and characterization of new thermoplastic poly(carbonate-urethane) elastomers derived from HDI and aliphatic-aromatic chain extenders. Eur Polym J. 2009;45:2629–43.

    Article  CAS  Google Scholar 

  9. Baudis S, Ligon SC, Seidler K, Weigel G, Grasl C, Bergmeister H, Shima H, Liska R. Hard-block degradable thermoplastic urethane-elastomers for electrospun vascular prostheses. J Polym Sci Pol Chem. 2012;50:1272–80.

    Article  CAS  Google Scholar 

  10. Chen QZ, Liang SL, Thomas GA. Elastomeric biomaterials for tissue engineering. Prog Polym Sci. 2013;38:584–671.

    Article  CAS  Google Scholar 

  11. Chavarria F, Paul DR. Morphology and properties of thermoplastic polyurethane nanocomposites: effect of organoclay structure. Polymer. 2006;47:7760–73.

    Article  CAS  Google Scholar 

  12. Da Silva GR, da Silva-Cunha A, Behar-Cohen F, Ayres E, Orefice RL. Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products. Polym Degrad Stab. 2010;95:491–9.

    Article  Google Scholar 

  13. Chan-Chan LH, Solis-Correa R, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodriguez JV, Quintana P, Bartolo-Perez P. Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater. 2010;6:2035–44.

    Article  CAS  Google Scholar 

  14. Tang YW, Labow RS, Santerre JP. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes. Biomaterials. 2003;24:2805–19.

    Article  CAS  Google Scholar 

  15. Jasinska L, Haponiuk JT, Balas A. Dynamic mechanical properties and thermal degradation process of the compositions obtained from unsaturated poly(esterurethanes) cross-linked with styrene. J Therm Anal Calorim. 2008;93:777–81.

    Article  CAS  Google Scholar 

  16. Pavličević J, Špírková M, Strachota A, Szecsenyi KM, Lazić N, Budinski-Simendić J. The influence of montmorillonite and bentonite addition on thermal properties of polyurethanes based on aliphatic polycarbonate diols. Thermochim Acta. 2010;509:73–80.

    Article  Google Scholar 

  17. Poręba R, Kredatusová J, Hodan J, Serkis M, Špírková M. Thermal and mechanical properties of multiple-component aliphatic degradable polyurethanes. J Appl Polym Sci. 2015;132:41872.

    Google Scholar 

  18. Poręba R, Špírková M, Pavličević J, Budinski-Simendić J, Szecsenyi KM, Hollo B. Aliphatic polycarbonate-based polyurethane nanostructured materials: the influence of the composition on thermal stability and degradation. Compos Part B Eng. 2014;58:496–501.

    Article  Google Scholar 

  19. Pielichowski K, Leszczynska A. TG-FTIR study of the thermal degradation of polyoxymethylene (POM/thermoplastic polyurethane (TPU) blends. J Therm Anal Calorim. 2004;78:631–7.

    Article  CAS  Google Scholar 

  20. Gupta YN, Abbas SM, Sharma RB, Setua DK. Crystallization kinetics of polyurethane nanocomposites. J Therm Anal Calorim. 2015;119:1393–405.

    Article  CAS  Google Scholar 

  21. Bagdi K, Molnar K, Pukanszky B Jr, Pukanszky B. Thermal analysis of the structure of segmented polyurethane elastomers: relation to mechanical properties. J Therm Anal Calorim. 2009;98:825–32.

    Article  CAS  Google Scholar 

  22. Pinto ERP, Barud HS, Polito WL, Ribeiro SJL, Messaddeq Y. Preparation and characterization of the bacterial cellulose/polyurethane nanocomposites. J Therm Anal Calorim. 2013;114:549–55.

    Article  CAS  Google Scholar 

  23. Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci. 2009;34:1068–133.

    Article  CAS  Google Scholar 

  24. Fabris HJ. Thermal and oxidative stability of urethanes. In: Frisch C, Reegen SL, Klempner D, editors. Advances in urethane science and technology, vol. 4. Westport: Technomic Publication; 1976. p. 89–111.

    Google Scholar 

  25. Askari F, Barikani M, Barmar M, Shokrolahi F, Vafayan M. Study of thermal stability and degradation kinetics of polyurethane–ureas by thermogravimetry. Iran Polym J. 2015;24:783–9.

    Article  CAS  Google Scholar 

  26. Saunders JH. The reactions of isocyanates and isocyanate derivatives at elevated temperatures. Rubber Chem Technol. 1959;32:337–45.

    Article  CAS  Google Scholar 

  27. Dyer E, Wright GC. Thermal degradation of alkyl N-phenylcarbamates. J Am Chem Soc. 1959;81:2138–43.

    Article  CAS  Google Scholar 

  28. Mazurek MM, Parzuchowski P, Rokicki G. Propylene carbonate as a source of carbonate units in the synthesis of elastomeric poly(carbonate-urethane)s and poly(ester-carbonateurethane)s. J Appl Polym Sci. 2014;131:39764.

    Article  Google Scholar 

  29. Špírková M, Poręba R, Pavličević J, Kobera L, Baldrian J, Pekárek M. Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites: I—the influence of hard-segment content and macrodiol-constitution on bottom-up self-assembly. J Appl Polym Sci. 2012;126:1016–30.

    Article  Google Scholar 

  30. Poręba R, Špírková M, Brožová L, Lazić N, Pavličević J, Strachota A. Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites: II—mechanical, thermal, and gas transport properties. J Appl Polym Sci. 2013;127:329–41.

    Article  Google Scholar 

  31. Špírková M, Pavličević J, Strachota A, Poręba R, Bera O, Kaprálková L, Baldrian J, Šlouf M, Lazić N, Budinski-Simendić J. Novel polycarbonate-based polyurethane elastomers: composition–property relationship. Eur Polym J. 2011;47:959–72.

    Article  Google Scholar 

  32. Špírková M, Machová L, Kobera L, Brus J, Poręba R, Serkis M, Zhigunov A. Multiscale approach to the morphology, structure, and segmental dynamics of complex degradable aliphatic polyurethanes. J Appl Polym Sci. 2015;132:41590.

    Google Scholar 

  33. Poręba R, Hodan J, Kredatusová J, Kubies D. Hydrolytic stability of polycarbonate-based polyurethane elastomers tested in physiologically simulated conditions. Polym Degrad Stab. 2015;119:23–34.

    Article  Google Scholar 

  34. Špírková M, Serkis M, Poręba R, Machová L, Hodan J, Kredatusová J, Kubies D, Zhigunov A. Experimental study of the simulated process of degradation of polycarbonate- and D,L-lactide-based polyurethane elastomers under conditions mimicking the physiological environment. Polym Degrad Stab. 2016;125:115–28.

    Article  Google Scholar 

  35. Cervantes-Uc JM, Espinosa JIM, Cauich-Rodriguez JV, Avila-Ortega A, Vazquez-Torres H, Marcos-Fernandez A, Roman JS. TG/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites. Polym Degrad Stab. 2009;94:1666–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation under Project No. 13-06700S. The authors would like to thank L. Machová and R. Poręba for the experimental work connected with PU material preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Špírková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Špírková, M., Kredatusová, J. & Hodan, J. The impact of conditions mimicking physiological environment on the thermal stability of aliphatic polycarbonate-based polyurethane elastomers. J Therm Anal Calorim 128, 1699–1709 (2017). https://doi.org/10.1007/s10973-016-6029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6029-y

Keywords

Navigation