Skip to main content
Log in

Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The catalytic effect of ferrocyanide salts of d-metals on the thermo-oxidative degradation of lignocellulose-inorganic sorbents derived from apricot seed shells was investigated by differential thermal analysis. A comparative analysis of the thermal characteristics of the apricot seed shells and the lignocellulose matrix obtained from the shells by alkali–acid pretreatment was performed. It was shown that acid-alkali pretreatment of the apricot seed shells increases the thermal stability of the lignocellulosic material, due to the removal of low molecular weight carbohydrates and other components. The thermal degradation process of the lignocellulose-inorganic samples containing different ferrocyanides occurred at lower temperatures than the initial lignocellulose matrix, indicating the catalytic activity of modifiers. It was demonstrated that for the sorbents containing mixed salts of potassium cobalt and potassium nickel ferrocyanide, thermal destruction ends at temperatures that are 60 °C lower than those for the initial lignocellulose matrix. The obtained results also show that the thermal destruction of composite lignocellulose-inorganic sorbents can be a suitable method for their disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pinder JE III, Hinton TG, Taylor BE, Whicker FW. Cesium accumulation by aquatic organisms at different trophic levels following an experimental release into a small reservoir. J Environ Radioact. 2011;102:283–93.

    Article  CAS  Google Scholar 

  2. Racine R, Grandcolas L, Grison S, Gourmelon P, Veyssiere G, Souidi M. Molecular modifications of cholesterol metabolism in the liver and the brain after chronic contamination with cesium 137. Food Chem Toxicol. 2009;47(7):1642–7.

    Article  CAS  Google Scholar 

  3. Mtui GYS. Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr J Biotechnol. 2009;8(8):1398–415.

    CAS  Google Scholar 

  4. Mendoza-Castillo DI, Villalobos-Ortega N, Bonilla-Petriciolet A, Tapia-Picazo JC. Neural network modeling of heavy metal sorption on lignocellulosic biomasses: effect of metallic ion properties and sorbent characteristics. Ind Eng Chem Res. 2015;54(1):443–53.

    Article  CAS  Google Scholar 

  5. Pagnanelli F, Toro L, Veglio F. Olive mill solid residues as heavy metal sorbent material: a preliminary study. Waste Manag. 2002;22(8):901–7.

    Article  CAS  Google Scholar 

  6. Saravanan R, Ravikumar L. The use of new chemically modified cellulose for heavy metal ion adsorption and antimicrobial activities. J Water Resour Prot. 2015;7:530–45.

    Article  CAS  Google Scholar 

  7. Shin EW, Rowell RM. Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation: the origin of sorption capacity improvement. Chemosphere. 2005;60:1054–61.

    Article  CAS  Google Scholar 

  8. Galysh VV, Kartel MT, Milyutin VV. Synthesis and properties of combined cellulose-inorganic sorbents for the concentration of cesium-137. Surface. 2013;5(20):135–43 (in Ukrainian).

    Google Scholar 

  9. Milyutin VV, Gelis VM, Klindukhov VG, Obruchikov AV. Coprecipitation of microamounts of Cs with ferrocyanides of various metals. Radiochemistry. 2004;46(5):444–5.

    Article  Google Scholar 

  10. Parparita E, Brebu M, Uddin MA, Yanik J, Vasile C. Pyrolysis behaviors of various biomasses. Polym Degrad Stab. 2014;100:1–9.

    Article  CAS  Google Scholar 

  11. Shen DK, Gu S, Luo KH, Bridgwater AV, Fang MX. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel. 2009;88:1024–30.

    Article  CAS  Google Scholar 

  12. Ahiduzzaman M, Islam AKMS. Thermo-gravimetric and kinetic analysis of different varieties of rice husk. Procedia Eng. 2015;105:646–51.

    Article  Google Scholar 

  13. Jaskolowski W, Kozakiewicz P, Szwed M. Thermogravimetric research on the influence of wood species on its thermal decomposition. For Wood Technol. 2010;71:296–9.

    Google Scholar 

  14. Chew J-J, Doshi V, Yong S-T, Bhattacharya S. Kinetic study of torrefaction of oil palm shell, mesocarp and empty fruit bunch. J Therm Anal Calorim. 2016;126(2):709–15.

    Article  CAS  Google Scholar 

  15. Bryś A, Bryś J, Ostrowska-Ligęza E, Kaleta A, Górnicki K, Głowacki S, Koczoń P. Wood biomass characterization by DSC or FT-IR spectroscopy. J Therm Anal Calorim. 2016;126(1):27–35.

    Article  Google Scholar 

  16. Medrano JALM, Martínez DB, De la Rosa JR, Pedrazza ESCP, Flores-Escamilla GA, Ciuta S. Particle pyrolysis modeling and thermal characterization of pecan nutshell. J Therm Anal Calorim. 2016;126(2):969–79.

    Article  Google Scholar 

  17. TranVan L, Legrand V, Jacquemin F. Thermal decomposition kinetics of balsa wood: kinetics and degradation mechanisms comparison between dry and moisturized materials. Polym Degrad Stab. 2014;110:208–15.

    Article  CAS  Google Scholar 

  18. Gao M, Sun CY, Wang CX. Thermal degradation of wood treated with flame retardants. J Therm Anal Calorim. 2006;85:765–9.

    Article  CAS  Google Scholar 

  19. Khelfa A, Finqueneisel G, Auber M, Weber JV. Influence of some minerals on the cellulose thermal degradation mechanisms. Thermogravimetic and pyrolysis-mass spectrometry studies. J Therm Anal Calorim. 2008;92(3):795–9.

    Article  CAS  Google Scholar 

  20. Mayer ZA, Apfelbacher A, Hornung A. Effect of sample preparation on the thermal degradation of metal-added biomass. J Anal Appl Pyrolysis. 2012;94:170–6.

    Article  CAS  Google Scholar 

  21. Galysh VV, Kartel MT, Milyutin VV, Pakhlov EM, Oranska OI, Gornikov YI, Sedliacik J, Lagana R. Composite cellulose-inorganic sorbents for 137Cs recovery. J Radioanal Nucl Chem. 2013;301(2):315–21.

    Article  Google Scholar 

  22. Wise LE, Merphy M, D’Addieco AA. Chlorite holocellulose, its fraction and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trad J. 1946;122:35–43.

    CAS  Google Scholar 

  23. Keltsev NV. Fundamentals of adsorption technology. Moscow: Chimia; 1991 (in Russian).

    Google Scholar 

  24. Nikolaichuk AA, Kartel NT, Kupchik AA, Denisovich VA. Synthesis and properties of sorbents derived from cellulose and lignin plant raw material—waste of agriculture. Sorpt Chromatogr Process. 2006;7(3):489–98 (in Russian).

    Google Scholar 

  25. Xu F, Yu J, Nesso T, Dowell F, Wang D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy. 2013;104:801–9.

    Article  CAS  Google Scholar 

  26. Giudicianni P, Cardone G, Ragucci R. Cellulose, hemicelluloses and lignin slow steam pyrolysis: thermal decomposition of biomass component mixture. J Anal Appl Pyrolysis. 2013;100:213–22.

    Article  CAS  Google Scholar 

  27. Findorák R, Fröhlichová M, Legemza J, Findoráková L. Thermal degradation and kinetic study of sawdusts and walnut shells via thermal analysis. J Therm Anal Calorim. 2016;125(2):689–94.

    Article  Google Scholar 

  28. Chhiti Y, Kemiha M. Thermal conversation of biomass, pyrolysis and gasification: a review. Int J Eng Sci. 2013;2(3):75–85.

    Google Scholar 

  29. Rogovin ZA. Chemistry of cellulose. Moscow: Chimia; 1972 (in Russian).

    Google Scholar 

  30. Antal MJ Jr. Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res. 1995;34(3):703–17.

    Article  CAS  Google Scholar 

  31. Bartkowiak M, Zakrzewski R. Thermal degradation of lignins isolated from wood. J Therm Anal Calorim. 2004;77:295–304.

    Article  CAS  Google Scholar 

  32. Poletto M, Zattera AJ, Forte MMC, Santana RMC. Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol. 2012;109:149–53.

    Article  Google Scholar 

  33. Brebu M, Vasile C. Thermal degradation of lignin—a review. Cellul Chem Technol. 2010;44(9):353–63.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme, project PIRSES-GA-2011-295260, “ECONANOSORB”, and by the “Fine Chemicals” Programme of the National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Galysh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galysh, V., Sevastyanova, O., Кartel, M. et al. Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents. J Therm Anal Calorim 128, 1019–1025 (2017). https://doi.org/10.1007/s10973-016-5984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5984-7

Keywords

Navigation