Skip to main content
Log in

A comparison study on non-isothermal decomposition kinetics of chitosan with different analysis methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A thermal degradation study of chitosan in air atmosphere has been carried out in detail through Fourier transform infrared (FTIR) analysis, thermogravimetric (TG) analysis and differential thermal analysis (DTA) measurements. FTIR spectra reveal the variations of chemical structures of chitosan in the course of thermal degradation. The mass loss data were collected under the heating rates of 5–30 K min−1. Kinetic analysis of chitosan thermal degradation has been performed through isoconversional FWO, CR, MKN and Tang methods, and the calculated results are basically comparable for these four different methods. With the Arrhenius parameters obtained, the four methods have been attempted to reconstruct the temperature-dependent mass conversion curves and have resulted in generally acceptable results. The TG and DTA results suggest that two-stage thermal degradation processes may be better assumed. For more accurately describing the thermal degradation process of chitosan, the most probable reaction functions have thus been determined for these two stages, leading to greatly improved calculation performance over the entire conversion range. On the basis of the Arrhenius parameter values obtained, the changes in entropy, enthalpy and Gibbs free energy, and lifetime predictions have been estimated concerning the thermal degradation processes of chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32.

    Article  CAS  Google Scholar 

  2. Prashanth KVH, Tharanathan RN. Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol. 2007;18:117–31.

    Article  CAS  Google Scholar 

  3. Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymer: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34:641–78.

    Article  CAS  Google Scholar 

  4. Peniche-Covas C, Argüelles-Monal W, Roman JS. A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polym Degrad Stab. 1993;39:21–8.

    Article  CAS  Google Scholar 

  5. Tang W, Wang C, Chen D. Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab. 2005;87:389–94.

    Article  CAS  Google Scholar 

  6. de Britto D, Campana-Filho SP. Kinetics of the thermal degradation of chitosan. Thermochim Acta. 2007;465:73–82.

    Article  Google Scholar 

  7. Lopez FA, Merce ALR, Alguacil FJ, Lopez-Delgado A. A kinetic study on the thermal behaviour of chitosan. J Therm Anal Calorim. 2008;91:633–9.

    Article  CAS  Google Scholar 

  8. Georgieva V, Zvezdova D, Vlaev L. Non-isothermal kinetics of thermal degradation of chitosan. Chem Cent J. 2012;6:81–91.

    Article  CAS  Google Scholar 

  9. Muraleedharan K, Alikutty P, Mujeeb VMA, Sarada K. Kinetic studies on the thermal dehydration and degradation of chitosan and citralidene chitosan. J Polym Environ. 2015;23:1–10.

    Article  CAS  Google Scholar 

  10. Hong PZ, Li SD, Ou CY, Li CP, Yang L, Zhang CH. Thermogravimetric analysis of chitosan. J Appl Polym Sci. 2007;105:547–51.

    Article  CAS  Google Scholar 

  11. Muraleedharan K, Alikutty P, Mujeeb VMA. Thermal dehydration and degradation kinetics of heptylidene chitosan. Polym Bull. 2015;72:809–19.

    Article  CAS  Google Scholar 

  12. Li SD, Li PW, Yang ZM, Dong JJ, Yang XH, Yang L. Thermal degradation of hydroxypropyl trimethyl ammonium chloride chitosan–Cd complexes. J Therm Anal Calorim. 2014;118:15–21.

    Article  CAS  Google Scholar 

  13. Pereira FS, Agostini DLDS, Job AE, González ERP. Thermal studies of chitin–chitosan derivatives. J Therm Anal Calorim. 2010;114:321–7.

    Article  Google Scholar 

  14. Li SD, Zhang CH, Dong JJ, Ou CY, Quan WY, Yang L, She XD. Effect of cupric ion on thermal degradation of quaternized chitosan. Carbohydr Polym. 2010;81:182–7.

    Article  CAS  Google Scholar 

  15. Ou CY, Zhang CH, Li SD, Yang L, Dong JJ, Mo XL, Zeng MT. Thermal degradation kinetics of chitosan–cobalt complex as studied by thermogravimetric analysis. Carbohydr Polym. 2010;82:1284–9.

    Article  CAS  Google Scholar 

  16. Taboada E, Cabrera G, Jimenez R, Cardenas G. A kinetic study of the thermal degradation of chitosan-metal complexes. J Appl Polym Sci. 2009;114:2043–52.

    Article  CAS  Google Scholar 

  17. Flynn JH, Wall LA. General treatment of thermogravimetry of polymers. J Res Natl Bur Stand Sect A. 1966;70A:487–523.

    Article  Google Scholar 

  18. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  19. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  20. Madhysudanan PM, Krishnan K, Ninan KN. New equations for kinetic analysis of non-isothermal reactions. Thermochim Acta. 1993;221:13–21.

    Article  Google Scholar 

  21. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  22. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

  23. Georgieva V, Zvezdova D, Vlaev L. Non-isothermal kinetics of thermal degradation of chitin. J Therm Anal Calorim. 2013;111:763–71.

    Article  CAS  Google Scholar 

  24. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  25. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescud C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  26. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  27. Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta. 2003;396:153–66.

    Article  CAS  Google Scholar 

  28. Zawadzki J, Kaczmarek H. Thermal treatment of chitosan on various conditions. Carbohydr Polym. 2010;80:394–400.

    Article  CAS  Google Scholar 

  29. Huang Z, Ye Q-Q, Teng LJ. A comparison study on thermal decomposition behavior of poly (l-lactide) with different kinetic models. J Therm Anal Calorim. 2015;119:2015–27.

    Article  CAS  Google Scholar 

  30. Seo DK, Park SS, Hwang JH, Yu T. Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrol. 2010;89:66–73.

    Article  CAS  Google Scholar 

  31. Willium PT, Besler S. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy. 1996;7:233–50.

    Article  Google Scholar 

  32. Mendonça ARV, de Souza SMAGU, Valle JAB, de Souza AAU. Thermogravimetric analysis and kinetic study of pyrolysis and combustion of residual textile sludge. J Thermal Anal Calorim. 2015;121:807–14.

    Article  Google Scholar 

  33. Varganici CD, Marangoci N, Rosu L, Barbu-Mic C, Rosu D, Pinteala M, Simionescu BC. TGA/DTA–FTIR–MS coupling as analytical tool for confirming inclusion complexes occurrence in supramolecular host–guest architectures. J Anal Appl Pyrol. 2015;113:132–42.

    Article  Google Scholar 

  34. Gao WH, Chen KF, Yang RD, Yang F. Process for coating of reconstituted tobacco sheet with citrates. J Anal Appl Pyrol. 2015;114:138–42.

    Article  CAS  Google Scholar 

  35. Varganici CD, Rosu D, Barbu-Mic C, Rosu L, Popovici D, Hulubei C, Simionescu BC. On the thermal stability of some aromatic–aliphatic polyimides. J Anal Appl Pyrol. 2015;113:390–401.

    Article  CAS  Google Scholar 

  36. Aburto J, Moran M, Galano A, Torres-Garcia E. Non-isothermal pyrolysis of pectin: a thermochemical and kinetic approach. J Anal Appl Pyrol. 2015;112:94–104.

    Article  CAS  Google Scholar 

  37. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol. 2008;81:253–62.

    Article  CAS  Google Scholar 

  38. Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99:551–61.

    Article  CAS  Google Scholar 

  39. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  40. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1967;57:217–21.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank National Students’ Innovation and Entrepreneurship Training Program (No. 201510069032) and Tianjin University of Commerce (TJUC-2015-003) for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, YH., Huang, Z., Ye, QQ. et al. A comparison study on non-isothermal decomposition kinetics of chitosan with different analysis methods. J Therm Anal Calorim 128, 1077–1091 (2017). https://doi.org/10.1007/s10973-016-5972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5972-y

Keywords

Navigation