Skip to main content
Log in

Nanohybrids of novolac phenolic resin and carbon nanotube-containing silica network

Two different approaches for improving thermal properties of resin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two different methods were used for preparation of novolac phenolic resin nanohybrids containing carbon nanotube and silica/siloxane moieties. Oxidized carbon nanotube was modified with furfuryl alcohol and 3-(trimethoxysilyl)propyl methacrylate (MPS) to obtain CNTFASi. Carbon nanotube xerogel (CNTFAX) was then obtained by incorporation of CNTFASi into silica/siloxane network by using tetraethyl orthosilicate (TEOS). The first nanohybrid was prepared by addition of CNTFAX into the novolac phenolic resin matrix. Incorporation of (3-glycidyloxypropyl) trimethoxysilane-modified novolac phenolic resin, CNTFASi, and TEOS into silica/siloxane network results in the second nanohybrid. These two types of nanohybrids were compared from the viewpoint of thermal properties. Successful modification of carbon nanotube and novolac phenolic resin was proved by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis results. Molar ratios of furfuryl alcohol in CNTFA and MPS in CNTFASi are 597 and 108 μmol g−1, respectively. Formation of silica/siloxane xerogel network in CNTFAX was evaluated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that nanotubes with smooth surface are incorporated into the spongy silica/siloxane matrix. Char residue of CR is decreased from 58.2 to 50.6% by the addition of only 4 mass% of CNTFAX. Finally, char residue of 71.1% for the nanohybrid of modified novolac resin with 4 mass% of CNTFASi shows 12.8% increase in char residue with respect to the neat cured resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rapacz-Kmita A, Gajek M, Dudek M, Stodolak-Zych E, Szaraniec B, Lach R. Thermal, structural and mechanical analysis of polymer/clay nanocomposites with controlled degradation. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5771-5.

    Google Scholar 

  2. Patsidis AC, Kalaitzidou K, Psarras GC. Graphite nanoplatelets/polymer nanocomposites: thermomechanical, dielectric, and functional behavior. J Therm Anal Calorim. 2014;116:41–9.

    Article  CAS  Google Scholar 

  3. Liu Y, Jing X. Pyrolysis and structure of hyperbranched polyborate modified phenolic resins. Carbon. 2007;45:1965–71.

    Article  CAS  Google Scholar 

  4. Xu P, Jing X. Pyrolysis of hyperbranched polyborate modified phenolic resin. Polym Eng Sci. 2010;50:1382–8.

    Article  CAS  Google Scholar 

  5. Chiang CL, Ma CCM, Wu DL, Kuan HC. Preparation, characterization, and properties of novolac-type phenolic/SiO2 hybrid organic–inorganic nanocomposite materials by sol–gel method. J Polym Sci Part A Polym Chem. 2003;41:905–13.

    Article  CAS  Google Scholar 

  6. Lin JM, Ma CC, Wang FY, Wu HD, Kuang SC. Thermal, mechanical, and morphological properties of phenolic resin/silica hybrid creamers. J Polym Sci Part B Polym Phys. 2000;38:1699–706.

    Article  CAS  Google Scholar 

  7. Roghani-Mamaqani H, Haddadi-Asl V, Mortezaei M, Khezri K. Furfuryl alcohol functionalized graphene nanosheets for synthesis of high carbon yield novolak composites. J Appl Polym Sci. 2014;131:40273.

    Article  Google Scholar 

  8. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M. Functionalization of carbon nanotubes by furfuryl alcohol moieties for preparation of novolac phenolic resin composites with high carbon yield values. Colloid Polym Sci. 2015;293:3623–31.

    Article  CAS  Google Scholar 

  9. Sobani M, Haddadi-Asl V, Salami-Kalajahi M, Roghani-Mamaqani H, Mirshafiei-Langari SA, Khezri K. “Grafting through” approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible addition-fragmentation chain transfer polymerization. J Sol Gel Sci Technol. 2013;66:337–44.

    Article  CAS  Google Scholar 

  10. Mirshafiei-Langari SA, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K. Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization. Polym Compos. 2013;34:1648–54.

    Article  CAS  Google Scholar 

  11. Sobani M, Haddadi-Asl V, Mirshafiei-Langari SA, Salami-Kalajahi M, Roghani-Mamaqani H, Khezri K. A kinetics study on the in situ reversible addition-fragmentation chain transfer and free radical polymerization of styrene in presence of silica aerogel nanoporous particles. Des Monomers Polym. 2014;17:245–54.

    Article  CAS  Google Scholar 

  12. Mirshafiei-Langari SA, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K. In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: kinetic study and investigation of thermal properties. J Polym Res. 2013;20:163.

    Article  Google Scholar 

  13. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M. Organic-inorganic nanohybrids of novolac phenolic resin and carbon nanotube: high carbon yields by using carbon nanotube aerogel and resin incorporation into aerogel network. Microporous Mesoporous Mater. 2016;224:58–67.

    Article  CAS  Google Scholar 

  14. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M. Novolac phenolic resin and graphene aerogel organic-inorganic nanohybrids: high carbon yields by resin modification and its incorporation into aerogel network. Polym Degrad Stab. 2016;124:1–14.

    Article  CAS  Google Scholar 

  15. Roghani-Mamaqani H, Haddadi-Asl V, Ghaderi-Ghahfarrokhi M, Sobhkhiz Z. Reverse atom transfer radical polymerization of methyl methacrylate in the presence of Azo-functionalized carbon nanotubes: a grafting from approach. Colloid Polym Sci. 2014;292:2971–81.

    Article  CAS  Google Scholar 

  16. Roghani-Mamaqani H, Haddadi-Asl V, Sobhkhiz Z, Ghaderi-Ghahfarrokhi M. Grafting poly (methyl methacrylate) from azo-functionalized graphene nanolayers via reverse atom transfer radical polymerization. Colloid Polym Sci. 2015;293:735–50.

    Article  CAS  Google Scholar 

  17. Roghani-Mamaqani H, Haddadi-Asl V. In-plane functionalizing graphene nanolayers with polystyrene by atom transfer radical polymerization: grafting from hydroxyl groups. Polym Compos. 2014;35:386–95.

    Article  CAS  Google Scholar 

  18. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Zeinali E, Salami-Kalajahi M. In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. J Polym Res. 2014;21:333.

    Article  Google Scholar 

  19. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M. Edge-functionalized graphene nanoplatelets with polystyrene by atom transfer radical polymerization: grafting through carboxyl groups. Polym Int. 2014;63:1912–23.

    Article  CAS  Google Scholar 

  20. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M, Najafi M. Kinetic study of styrene atom transfer radical polymerization from hydroxyl groups of graphene nanoplatelets: heterogeneities in chains and graft densities. Polym Eng Sci. 2015;55:1720–32.

    Article  CAS  Google Scholar 

  21. Roghani-Mamaqani H, Khezri K. A grafting from approach to graft polystyrene chains to the surface of graphene nanolayers by RAFT polymerization: various graft densities from hydroxyl groups. Appl Surf Sci. 2016;360:373–82.

    Article  CAS  Google Scholar 

  22. Jafarzadeh S, Haddadi-Asl V, Roghani-Mamaqani H. Nanofibers of poly (hydroxyethyl methacrylate)-grafted halloysite nanotubes and polycaprolactone by combination of RAFT polymerization and electrospinning. J Polym Res. 2015;22:123.

    Article  Google Scholar 

  23. Yuan FY, Zhang HB, Li X, Ma HL, Li XZ, Yu ZZ. In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon. 2014;68:653–61.

    Article  CAS  Google Scholar 

  24. Yuen SM, Ma CCM, Chiang CL, Teng CC, Yu YH. Poly(vinyltriethoxysilane) modified MWCNT/polyimide nanocomposites: preparation, morphological, mechanical, and electrical properties. J Polym Sci Part A Polym Chem. 2008;46:803–16.

    Article  CAS  Google Scholar 

  25. Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun. 2009;26:3880–2.

    Article  Google Scholar 

  26. Li W, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS, Mai YW. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon. 2011;49:4724–30.

    Article  CAS  Google Scholar 

  27. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M, Najafi M, Sobani M, Mirshafiei-Langari SA. Confinement effect of graphene nanoplatelets on atom transfer radical polymerization of styrene: grafting through hydroxyl groups. Iran Polym J. 2015;24:51–62.

    Article  CAS  Google Scholar 

  28. Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit JM, Schreiber J, Chauvet O. Synthesis of a new polyaniline/nanotube composite: in situ polymerisation and charge transfer through site-selective interaction. Chem Commun. 2001;16:1450–1.

    Article  Google Scholar 

  29. Yao X, Wu H, Wang J, Qu S, Chen G. Carbon Nanotube/poly(methyl methacrylate) (CNT/PMMA) composite electrode fabricated by in situ polymerization for microchip capillary electrophoresis. Chem Eur J. 2007;13:846–53.

    Article  CAS  Google Scholar 

  30. Lei Z, Yan Y, Feng J, Wu J, Huang G, Li X, Xing W, Zhao L. Enhanced power factor within graphene hybridized carbon aerogels. RSC Adv. 2015;5:25650–6.

    Article  CAS  Google Scholar 

  31. Qian Y, Wei P, Jiang P, Liu J. Preparation of halogen-free flame retardant hybrid paraffin composites as thermal energy storage materials by in situ sol–gel process. Sol Energy Mater Sol Cells. 2012;107:13–9.

    Article  CAS  Google Scholar 

  32. Wang Z, Wei P, Qian Y, Liu J. The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos B. 2014;60:341–9.

    Article  Google Scholar 

  33. Cheng WY, Wang CC, Lu SY. Graphene aerogels as a highly efficient counter electrode material for dye-sensitized solar cells. Carbon. 2013;54:291–9.

    Article  CAS  Google Scholar 

  34. Wu C, Huang X, Wang G, Wu X, Yang K, Li S, Jiang P. Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J Mater Chem. 2012;22:7010–9.

    Article  CAS  Google Scholar 

  35. Ngo VG, Bressy C, Leroux C, Margaillan A. Synthesis of hybrid TiO2 nanoparticles with well-defined poly(methyl methacrylate) and poly(tert-butyldimethylsilyl methacrylate) via the RAFT process. Polymer. 2009;50:3095–102.

    Article  CAS  Google Scholar 

  36. Xu P, Jing X. High carbon yield thermoset resin based on phenolic resin, hyperbranched polyborate, and paraformaldehyde. Polym Adv Technol. 2011;22:2592–5.

    Article  CAS  Google Scholar 

  37. Wang S, Jing X, Wang Y, Si J. High char yield of aryl boron-containing phenolic resins: the effect of phenylboronic acid on the thermal stability and carbonization of phenolic resins. Polym Degrad Stab. 2014;99:1–11.

    Article  CAS  Google Scholar 

  38. Hsiue GH, Shiao SJ, Wei HF, Kuo WJ, Sha YA. Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications. J Appl Polym Sci. 2001;79:342–9.

    Article  CAS  Google Scholar 

  39. Cui J, Yan Y, Liu J, Wu Q. Phenolic resin-MWNT nanocomposites prepared through an in situ polymerization method. Polym J. 2008;40:1067–73.

    Article  CAS  Google Scholar 

  40. Liu L, Ye Z. Effects of modified multi-walled carbon nanotubes on the curing behavior and thermal stability of boron phenolic resin. Polym Degrad Stab. 2009;94:1972–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Iran’s National Elites Foundation is greatly appreciated for its financial support (Grant Number: 15/76508).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Roghani-Mamaqani or Mehdi Salami-Kalajahi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noparvar-Qarebagh, A., Roghani-Mamaqani, H., Salami-Kalajahi, M. et al. Nanohybrids of novolac phenolic resin and carbon nanotube-containing silica network. J Therm Anal Calorim 128, 1027–1037 (2017). https://doi.org/10.1007/s10973-016-5970-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5970-0

Keywords

Navigation