Skip to main content
Log in

Differential scanning calorimetry study of the impact of annealing conditions on poly(ε-caprolactone) thermogels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A sample of poly(ε-caprolactone) was synthesized and mixed with dimethylformamide to form thermogels. Most of these gels show two endothermic melting events as measured by differential scanning calorimetry. Increasing the annealing temperature and annealing time or decreasing the cooling rate results in the appearance of the low-melting endotherm shifting to higher temperatures and growing in size and the high-melting endotherm shrinking until the two endotherms merge into a single peak. Mathematical simulations of the two endothermic melting events and an exothermic recrystallization event show that the high-melting endotherm remains constant, but a shift to higher temperatures of the low-melting endotherm and exothermic recrystallization results in the appearance of the low-melting endotherm growing in size and the high-melting endotherm shrinking. These results suggest two distinct crystallite populations. Additional evidence of the different populations of crystallites was provided through partial melting experiments. The melting behavior of a given set of annealing parameters is reproducible, but changing the annealing parameters can result in a very different melting behavior for the thermogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Guenet JM. Thermoreversible gelation of polymers and biopolymers. London: Academic Press; 1992.

    Google Scholar 

  2. Guenet JM. Polymer–solvent molecular compounds. Oxford: Elsevier; 2008.

    Google Scholar 

  3. Yang YC, Geil PH. Morphology and properties of PVC/solvent gels. J Macromol Sci Part B Phys. 1983;22:463–88.

    Article  Google Scholar 

  4. Smith P, Lemstra PJ. Ultra-high-strength polyethylene filaments by solution spinning/drawing. J Mater Sci. 1980;15:505–14.

    Article  CAS  Google Scholar 

  5. Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997;388:860–2.

    Article  CAS  Google Scholar 

  6. Zhou S, Deng X, Yang H. Biodegradable poly(ε-caprolactone)–poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials. 2003;24:3563–70.

    Article  CAS  Google Scholar 

  7. Park MH, Joo MK, Choi BG, Jeong B. Biodegradable thermogels. Acc Chem Res. 2012;45:424–33.

    Article  CAS  Google Scholar 

  8. Fu SZ, Guo G, Gong CY, Zeng S, Liang H, Luo F, Zhang XN, Zhao X, Wei YQ, Qian ZY. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1: Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)–poly(ε-caprolactone)–poly(ethylene glycol) hydrogel nanocomposites. J Phys Chem B. 2009;113:16518–25.

    Article  CAS  Google Scholar 

  9. Vlierberghe SV, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;12:1387–408.

    Article  Google Scholar 

  10. Lee JW, Hua F, Lee DS. Thermoreversible gelation of biodegradable poly(ϵ-caprolactone) and poly(ethylene glycol) multiblock copolymers in aqueous solutions. J Controll Release. 2001;73:315–27.

    Article  CAS  Google Scholar 

  11. Bae SJ, Joo MK, Jeong Y, Kim SW, Lee W, Sohn YS, Jeong B. Gelation behavior of poly(ethylene glycol) and polycaprolactone triblock and multiblock copolymer aqueous solutions. Macromolecules. 2006;39:4873–9.

    Article  CAS  Google Scholar 

  12. Liu CB, Gong CY, Huang MJ, Wang JW, Pan YF, Zhang YD, Li GZ, Gou ML, Wang KW, Tu MJ, Wei YQ, Qian ZY. Thermoreversible gel–sol behavior of biodegradable PCL–PEG–PCL triblock copolymer in aqueous solutions. J Biomed Mater Res Part B. 2008;84B:165–75.

    Article  CAS  Google Scholar 

  13. Zhou S, Deng X, Yang H. Biodegradable poly(ϵ-caprolactone)–poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials. 2003;24:3563–70.

    Article  CAS  Google Scholar 

  14. VonRue I, Foreman B, Monaghan J. Thermoreversible gelation of polycaprolactone in dimethylformamide. J Undergrad Chem Res. 2013;12:16–8.

    CAS  Google Scholar 

  15. Liu T, Petermann J. Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene. Polymer. 2001;42:6453–61.

    Article  CAS  Google Scholar 

  16. Yang I, Liu CY. Real-time SAXS and WAXS study of the multiple melting behavior of poly(ε-caprolactone). J Polym Sci Pol Phys. 2010;48:1777–85.

    Article  CAS  Google Scholar 

  17. Dikshit AK, Nandi AK. Gelation mechanism of thermoreversible gels of poly(vinylidene fluoride) and its blends with poly(methyl acrylate) in diethyl azelate. Langmuir. 2001;17:3607–15.

    Article  CAS  Google Scholar 

  18. Mutin PH, Guenet JM. Physical gels from PVC: aging and solvent effects on thermal behavior, swelling, and compression modulus. Macromolecules. 1989;22:843–8.

    Article  CAS  Google Scholar 

  19. Guenet JM, Lotz B, Wittman JC. Thermodynamic aspects and morphology of physical gels from isotactic polystyrene. Macromolecules. 1985;18:420–7.

    Article  CAS  Google Scholar 

  20. Berghmans H, Govaerts F, Overbergh N. Gelation and crystallization of poly(ethylene terephthalate-co-isophthalate). J Polym Sci Pol Phys. 1979;17:1251–67.

    Article  CAS  Google Scholar 

  21. Sasaki T. Melting of poly(ε-caprolactone) studied by step-heating calorimetry. J Therm Anal Calorim. 2013;111:717–24.

    Article  CAS  Google Scholar 

  22. Asplund JOB, Bowden T, Mathisen T, Hilborn J. Variable hard segment length in poly(urethane urea) through excess of diisocyanate and vapor phase addition of water. Macromolecules. 2006;39:4380–5.

    Article  CAS  Google Scholar 

  23. Lescanne M, Colin A, Mondain-Monval O, Fages F, Pozzo J-L. Structural aspects of the gelation process observed with low molecular mass organogelators. Langmuir. 2003;19:2013–20.

    Article  CAS  Google Scholar 

  24. Vikki T, Ruokolainen J, Ikkala OT. Thermoreversible gels of polyaniline: viscoelastic and electrical evidence on fusible network structures. Macromolecules. 1997;30:4064–72.

    Article  CAS  Google Scholar 

  25. Stoks W, Berghmans H, Molenaers P, Mewis J. Thermoreversible gelation of solution of poly(vinyl alcohol). Polym Int. 1988;20:361–9.

    CAS  Google Scholar 

  26. Prasad A, Mandelkern L. The thermoreversible gelation of syndiotactic polystyrene. Macromolecules. 1990;23:5041–3.

    Article  CAS  Google Scholar 

  27. Phillipson K, Jenkins MJ, Hay JN. The kinetics of crystallization of poly(ε-caprolactone) measured by FTIR spectroscopy. J Therm Anal Calorim. 2016;23:1491–500.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to J. Belanger and R. Supkowski for their feedback on this research and the King’s College Chemistry and Physics Department for providing funding. This research is based upon work supported by the National Science Foundation under CHE-1337137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac VonRue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VonRue, I., Conway, J.C. & Kline, D.J. Differential scanning calorimetry study of the impact of annealing conditions on poly(ε-caprolactone) thermogels. J Therm Anal Calorim 128, 465–474 (2017). https://doi.org/10.1007/s10973-016-5948-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5948-y

Keywords

Navigation