Skip to main content
Log in

Determination of basic sites in Mg–Al mixed oxides by combination of TPD-CO2 and CO2 adsorption calorimetry

When the same basic sites are reported from both techniques?

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We present the critical analysis of the utilization of CO2 adsorption calorimetry/volumetry and TPD-CO2 for the determination of the Mg–Al mixed oxide basicity. The aim of work is the description and the evaluation of both methods with respect to the fact when the same types of CO2 adsorption complexes are involved. Critical parts of basic sites determination are originally discussed for both methods. In TPD-CO2, the process of the purging of non-specifically physisorbed CO2 is stressed. In CO2 adsorption calorimetry, the differential heat of CO2 distinguishing CO2 adsorption on weak basic sites and non-specific CO2 physisorption is stressed. Both methods are applied on series of selected Mg/Al mixed oxides varying in Mg/Al molar ratio and alkali co-cation. We show that the generally used TPD-CO2 does not provide complete information about basic sites since some weak sites form unstable CO2 species and these species could not be involved in TPD experiments. All our TPD-CO2 experiments reflect at 0–485 °C those CO2 adsorbed in the range of the differential heat of CO2 above 30–32 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu ZP, Zhang J, Adebajo MO, Zhang H, Zhou C. Catalytic applications of layered double hydroxides and derivatives. Appl Clay Sci. 2011;53(2):139–50.

    Article  CAS  Google Scholar 

  2. Prado RG, Almeida GD, Carvalho MMO, Galvão LM, Bejan CCC, Costa LM, et al. Multivariate Method for transesterification reaction of soybean oil using calcined Mg–Al layered double hydroxide as catalyst. Catal Lett. 2014;144(6):1062–73.

    Article  CAS  Google Scholar 

  3. Zeng HY, Xu S, Liao MC, Zhang ZQ, Zhao C. Activation of reconstructed Mg/Al hydrotalcites in the transesterification of microalgae oil. Appl Clay Sci. 2014;91–92:16–24.

    Article  Google Scholar 

  4. Abello S, Medina F, Tichit D, Perez-Ramirez J, Sueiras JE, Salagre P, et al. Aldol condensation of campholenic aldehyde and MEK over activated hydrotalcites. Appl Catal B Environ. 2007;70(1–4):577–84.

    Article  CAS  Google Scholar 

  5. Meszaros S, Halasz J, Konya Z, Sipos P, Palinko I. Reconstruction of calcined MgAl- and NiMgAl-layered double hydroxides during glycerol dehydration and their recycling characteristics. Appl Clay Sci. 2013;80–81:245–8.

    Article  Google Scholar 

  6. Di Cosimo JI, Diez VK, Xu M, Iglesia E, Apesteguia CR. Structure and surface and catalytic properties of Mg–Al basic oxides. J Catal. 1998;178(2):499–510.

    Article  Google Scholar 

  7. Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today. 1991;11(2):173–301.

    Article  CAS  Google Scholar 

  8. Alvarez MG, Segarra AM, Contreras S, Sueiras JE, Medina F, Figueras F. Enhanced use of renewable resources: transesterification of glycerol catalyzed by hydrotalcite-like compounds. Chem Eng J. 2010;161(3):340–5.

    Article  CAS  Google Scholar 

  9. Di Cosimo JI, Apesteguia CR, Gines MJL, Iglesia E. Structural requirements and reaction pathways in condensation reactions of alcohols an MgyAlOx catalysts. J Catal. 2000;190(2):261–75.

    Article  Google Scholar 

  10. Silva CCCM, Ribeiro NFP, Souza MMVM, Aranda DAG. Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst. Fuel Process Technol. 2010;91(2):205–10.

    Article  CAS  Google Scholar 

  11. Sree R, Babu NS, Prasad PSS, Lingaiah N. Transesterification of edible and non-edible oils over basic solid Mg/Zr catalysts. Fuel Process Technol. 2009;90(1):152–7.

    Article  CAS  Google Scholar 

  12. Bolognini M, Cavani F, Scagliarini D, Flego C, Perego C, Saba M. Heterogeneous basic catalysts as alternatives to homogeneous catalysts: reactivity of Mg/Al mixed oxides in the alkylation of m-cresol with methanol. Catal Today. 2002;75(1–4):103–11.

    Article  CAS  Google Scholar 

  13. Prescott HA, Li ZJ, Kemnitz E, Trunschke A, Deutsch J, Lieske H, et al. Application of calcined Mg–Al hydrotalcites for Michael additions: an investigation of catalytic activity-and acid-base properties. J Catal. 2005;234(1):119–30.

    Article  CAS  Google Scholar 

  14. Shen JY, Tu M, Hu C. Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures. J Solid State Chem. 1998;137(2):295–301.

    Article  CAS  Google Scholar 

  15. Leon M, Diaz E, Vega A, Ordonez S. A kinetic study of CO2 desorption from basic materials: correlation with adsorption properties. Chem Eng J. 2011;175:341–8.

    Article  CAS  Google Scholar 

  16. Aramendia MA, Borau V, Jimenez C, Marinas JM, Ruiz JR, Urbano FJ. XRD and H-1 MAS NMR spectroscopic study of mixed oxides obtained by calcination of layered-double hydroxides. Mater Lett. 2000;46(6):309–14.

    Article  CAS  Google Scholar 

  17. Xie WL, Peng H, Chen LG. Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. J Mol Catal A Chem. 2006;246(1–2):24–32.

    Article  CAS  Google Scholar 

  18. Tittabutt T, Trakarnpruk W. Metal-loaded MgAl oxides for transesterification of glyceryl tributyrate and palm oil. Ind Eng Chem Res. 2008;47(7):2176–81.

    Article  Google Scholar 

  19. Navajas A, Campo I, Arzamendi G, Hernandez WY, Bobadilla LF, Centeno MA, et al. Synthesis of biodiesel from the methanolysis of sunflower oil using PURAL (R) Mg–Al hydrotalcites as catalyst precursors. Appl Catal B Environ. 2010;100(1–2):299–309.

    Article  CAS  Google Scholar 

  20. Shumaker JL, Crofcheck C, Tackett SA, Santillan-Jimenez E, Morgan T, Ji Y, et al. Biodiesel synthesis using calcined layered double hydroxide catalysts. Appl Catal B Environ. 2008;82(1–2):120–30.

    Article  CAS  Google Scholar 

  21. Alvarez MG, Chimentao RJ, Figueras F, Medina F. Tunable basic and textural properties of hydrotalcite derived materials for transesterification of glycerol. Appl Clay Sci. 2012;58:16–24.

    Article  CAS  Google Scholar 

  22. Bastiani R, Zonno IV, Santos IAV, Henriques CA, Monteiro JLF. Influence of thermal treatments on the basic and catalytic properties of Mg, Al-mixed oxides derived from hydrotalcites. Braz J Chem Eng. 2004;21(2):193–202.

    Article  CAS  Google Scholar 

  23. Cross HE, Brown DR. Entrained sodium in mixed metal oxide catalysts derived from layered double hydroxides. Catal Commun. 2010;12(3):243–5.

    Article  CAS  Google Scholar 

  24. Prinetto F, Ghiotti G, Durand R, Tichit D. Investigation of acid-base properties of catalysts obtained from layered double hydroxides. J Phys Chem B. 2000;104(47):11117–26.

    Article  CAS  Google Scholar 

  25. Fraile JM, Garcia N, Mayoral JA, Pires E, Roldan L. The influence of alkaline metals on the strong basicity of Mg–Al mixed oxides: the case of transesterification reactions. Appl Catal A Gen. 2009;364(1–2):87–94.

    Article  CAS  Google Scholar 

  26. Carvalho DL, de Avillez RR, Rodrigues MT, Borges LEP, Appel LG. Mg and Al mixed oxides and the synthesis of n-butanol from ethanol. Appl Catal A Gen. 2012;415:96–100.

    Article  Google Scholar 

  27. Wang D, Zhang X, Wei W, Sun Y. Mg/Al mixed oxides: heterogeneous basic catalysts for the synthesis of salicylamide from urea and phenol. Catal Commun. 2012;28:159–62.

    Article  CAS  Google Scholar 

  28. Zhang Z, Zhang Y, Wang Z, Gao X. Catalytic performance and mechanism of potassium-supported Mg–Al hydrotalcite mixed oxides for soot combustion with O2. J Catal. 2010;271(1):12–21.

    Article  CAS  Google Scholar 

  29. Valente JS, Prince J, Maubert AM, Lartundo-Rojas L, del Angel P, Ferrat G, et al. Physicochemical study of nanocapsular layered double hydroxides evolution. J Phys Chem C. 2009;113(14):5547–55.

    Article  CAS  Google Scholar 

  30. Pavel OD, Tichit D, Marcu I-C. Acido-basic and catalytic properties of transition-metal containing Mg–Al hydrotalcites and their corresponding mixed oxides. Appl Clay Sci. 2012;61:52–8.

    Article  CAS  Google Scholar 

  31. Meloni D, Monaci R, Solinas V, Auroux A, Dumitriu E. Characterisation of the active sites in mixed oxides derived from LDH precursors by physico-chemical and catalytic techniques. Appl Catal A Gen. 2008;350(1):86–95.

    Article  CAS  Google Scholar 

  32. Leon M, Diaz E, Vega A, Ordonez S, Auroux A. Consequences of the iron-aluminium exchange on the performance of hydrotalcite-derived mixed oxides for ethanol condensation. Appl Catal B Environ. 2011;102(3–4):590–9.

    Article  CAS  Google Scholar 

  33. Meloni D, Monaci R, Cutrufello MG, Rombi E, Ferino I. Adsorption microcalorimetry characterization of K-doped MgAl mixed oxide catalysts for soybean oil transesterification synthesized by impregnation and ball milling techniques. J Therm Anal Calorim. 2015;119(2):1023–36.

    Article  CAS  Google Scholar 

  34. Hajek M, Kutalek P, Smolakova L, Troppova I, Capek L, Kubicka D, et al. Transesterification of rapeseed oil by Mg–Al mixed oxides with various Mg/Al molar ratio. Chem Eng J. 2015;263:160–7.

    Article  CAS  Google Scholar 

  35. Kutalek P, Capek L, Smolakova L, Kubicka D. Aspects of Mg–Al mixed oxide activity in transesterification of rapeseed oil in a fixed-bed reactor. Fuel Process Technol. 2014;122:176–81.

    Article  CAS  Google Scholar 

  36. Bulanek R, Frolich K, Frydova E, Cicmanec P. Study of adsorption sites heterogeneity in zeolites by means of coupled microcalorimetry with volumetry. J Therm Anal Calorim. 2011;105(2):443–9.

    Article  CAS  Google Scholar 

  37. Liu Y, Lotero E, Goodwin JG, Mo X. Transesterification of poultry fat with methanol using Mg–A1 hydrotalcite derived catalysts. Appl Catal A Gen. 2007;331:138–48.

    Article  CAS  Google Scholar 

  38. Kustrowski P, Chmielarz L, Bozek E, Sawalha M, Roessner F. Acidity and basicity of hydrotalcite derived mixed Mg–Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2. Mater Res Bull. 2004;39(2):263–81.

    Article  CAS  Google Scholar 

  39. Constantino VRL, Pinnavaia TJ. Basic properties of Mg1–X(2+)Alx(3+) layered double hydroxides intercalated by carbonate, hydroxide chloride and sulfate anions. Inorg Chem. 1995;34(4):883–92.

    Article  CAS  Google Scholar 

  40. Reichle WT, Kang SY, Everhardt DS. The nature of the thermal-decomposition of a catalytically active anionic clay mineral. J Catal. 1986;101(2):352–9.

    Article  CAS  Google Scholar 

  41. Theiss FL, Ayoko GA, Frost RL. Thermogravimetric analysis of selected layered double hydroxides. J Therm Anal Calorim. 2013;112(2):649–57.

    Article  CAS  Google Scholar 

  42. Garcia-Sancho C, Moreno-Tost R, Merida-Robles JM, Santamaria-Gonzalez J, Jimenez-Lopez A, Torres PM. Etherification of glycerol to polyglycerols over MgAl mixed oxides. Catal Today. 2011;167(1):84–90.

    Article  CAS  Google Scholar 

  43. Grabowska H, Zawadzki M, Syper L, Mista W. Mg, Al-mixed oxide system: synthesis under hydrothermal conditions, physico-chemical characterisation and application as an efficient catalyst for imidazole methylation. Appl Catal A Gen. 2005;292:208–14.

    Article  CAS  Google Scholar 

  44. Veloso CO, Perez CN, de Souza BM, Lima EC, Dias AG, Monteiro JLF, et al. Condensation of glyceraldehyde over Mg, Al-mixed oxides derived from hydrotalcites. Microporous Mesoporous Mater. 2008;107(1–2):23–30.

    Article  CAS  Google Scholar 

  45. Shen JY, Kobe JM, Chen Y, Dumesic JA. Synthesis and Surface acid/base properties of magnesium–aluminum mixed oxides obtained from hydrotalcites. Langmuir. 1994;10(10):3902–8.

    Article  CAS  Google Scholar 

  46. Auroux A, Gervasini A. Microcalorimetric study of the acidity and basicity of metal-oxide surfaces. J Phys Chem. 1990;94(16):6371–9.

    Article  CAS  Google Scholar 

  47. Atkins PW. Physical chemistry. 6th ed. Oxford: Oxford University Press; 2000.

    Google Scholar 

  48. Leon M, Diaz E, Bennici S, Vega A, Ordonez S, Auroux A. Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility. Ind Eng Chem Res. 2010;49(8):3663–71.

    Article  CAS  Google Scholar 

  49. Hora L, Kelbichova V, Kikhtyanin O, Bortnovskiy O, Kubicka D. Aldol condensation of furfural and acetone over Mg–Al layered double hydroxides and mixed oxides. Catal Today. 2014;223:138–47.

    Article  CAS  Google Scholar 

  50. Azzouz A, Arus VA, Platon N, Ghomari K, Nistor ID, Shiao TC, et al. Polyol-modified layered double hydroxides with attenuated basicity for a truly reversible capture of CO2. Adsorpt J Int Adsorpt Soc. 2013;19(5):909–18. doi:10.1007/s10450-013-9498-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank to the Czech Science Foundation (Project No. GA15-21817S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Čapek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smoláková, L., Frolich, K., Troppová, I. et al. Determination of basic sites in Mg–Al mixed oxides by combination of TPD-CO2 and CO2 adsorption calorimetry. J Therm Anal Calorim 127, 1921–1929 (2017). https://doi.org/10.1007/s10973-016-5851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5851-6

Keywords

Navigation