Skip to main content
Log in

A simultaneous volumetric adsorption–isothermal titration calorimetry study of small molecules on supported metallic nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Adsorption microcalorimetry studies can determine the energetics involved in different adsorbate–surface interactions. These measurements can be taken using various techniques such as single-crystal adsorption calorimetry, isothermal titration calorimetry and differential scanning calorimetry. The incremental dosing of a small molecule adsorbate with simultaneous calorimetric measurement enables differential heats of adsorptions to be measured at a specific temperature. In this study, an automated volumetric adsorption apparatus (Micromeritics ASAP2020) was interfaced with a Differential Scanning Calorimeter (Setaram Sensys EVO) to perform simultaneous volumetric uptake and calorimetric measurements. Heats of adsorption of small gas molecules (CO, H2) on supported metal catalysts (Pt, Pd, Au) were measured using this setup. Similar calorimetric measurements for the adsorption of CO (0.5 % Pt/SiO2; 5 % Pd/Al2O3) and H2 (0.5 % Pt/SiO2) were also taken by interfacing a Micromeritics ASAP2020 with a custom-built calorimeter. From these studies, it was observed that the initial heats of CO adsorption on supported Pt (0.5 % Pt/Al2O3, 135 kJ mol−1; 1 % Pt/SiO2, 104 kJ mol−1) and Pd (5 % Pd/Al2O3, 148 kJ mol−1) catalysts were significantly higher than the corresponding Au (1 % Au/TiO2, 57.2 kJ mol−1; 1 % Au/Al2O3, 54.1 kJ mol−1) catalysts. It was also observed that the initial heat of adsorption of H2 on the supported 0.5 % Pt/Al2O3 (~80 to 89 kJ mol−1) catalyst is higher than that on 1 % Pt/SiO2 (~61 kJ mol−1). CO and H2 adsorption studies on the 0.5 % Pt/Al2O3 and the 5 % Pd/Al2O3 catalyst using both calorimetric setups yielded similar volumetric uptakes and initial heats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The differential calorimeter originally developed by Tian and improved by Calvet consists essentially of a large block of metal, in which two metal reaction vessels are mounted. Thermopiles, with hot junctions mounted on the reaction vessels and “cold” junctions on the block, serve to measure temperature differences between the block and the reaction vessels. In operation, the reaction to be measured is carried out in one reaction vessel, and a suitable blank reaction in the other, first allowing the reagents to reach thermal equilibrium with the block. The electromotive force output from the thermopiles is recorded as a function of time.

  2. The ontop site designates H bonded in an atop site surrounded by occupied threefold sites (hence referred to as ontop site).

References

  1. Roberts JK, Whipp B. The heat of adsorption of hydrogen on tungsten. Proc Camb Philos Soc. 1934;30:376–9.

    Article  CAS  Google Scholar 

  2. Roberts JK. The adsorption of hydrogen on tungsten. Proc R Soc (London). 1935;152:445–63.

    Article  CAS  Google Scholar 

  3. Roberts JK. Composite films of oxygen and hydrogen on tungsten. Proc R Soc (Lond). 1935;152:477–80.

    Article  CAS  Google Scholar 

  4. Yamazaki H, Oguri T, Kanomata J. Calorimetric studies on chemisorption of nitrogen on tantalum. Jpn J Appl Phys. 1971;10:304–9.

    Article  CAS  Google Scholar 

  5. Yamazaki H, Oguri T, Kanomata J. Calorimetric heats of chemisorption of nitrogen on tungsten at higher temperatures. Jpn J Appl Phys. 1971;10:1105.

    Article  CAS  Google Scholar 

  6. Eley DD, Norton PR. Heats of adsorption on metal wires. I. Hydrogen on polycrystalline tungsten. Proc R Soc (Lond). 1970;A314:301–18.

    Article  Google Scholar 

  7. Eley DD, Norton PR. Heats of adsorption on metal wires. II. The heat of adsorption of hydrogen on nickel. Proc R Soc (London). 1970;314:319–28.

    Article  Google Scholar 

  8. Norton PR, Richards PJ. Heat of adsorption of hydrogen on platinum. Surf Sci. 1974;44:129–40.

    Article  CAS  Google Scholar 

  9. Couper A, John CS. Interaction of diatomic molecules with clean metal wire surfaces. Part 1. Hydrogen on tungsten. J Chem Soc Faraday Trans. 1977;1(73):950–60.

    Article  Google Scholar 

  10. Couper A, John CS. Interaction of diatomic molecules with clean metal wire surfaces. Part 2 Nitrogen on tungsten. J Chem Soc Faraday Trans. 1977;1(73):961–7.

    Article  Google Scholar 

  11. Couper A, John CS. Sorption of hydrogen by palladium and palladium/silver alloy wires. J Chem Soc Faraday Trans. 1978;1(74):326–36.

    Article  Google Scholar 

  12. Beeck O, Smith AE, Wheeler A. Catalytic activity, crystal structure and adsorptive properties of evaporated metal films. A Proc R Soc (Lond). 1940;177:62–90.

    Article  CAS  Google Scholar 

  13. Beeck O. Surface catalysis. Rev Mod Phys. 1948;20:127–30.

    Article  CAS  Google Scholar 

  14. Beeck O. Catalysis—A challenge to the physicist (as exemplified by the hydrogenation of ethylene over metal catalysts). Rev Mod Phys. 1945;17:61–5.

    Article  CAS  Google Scholar 

  15. Beeck O, Cole WA, Wheeler A. Determination of heats of adsorption using metal films. Discuss Faraday Soc. 1950;8:314–21.

    Article  Google Scholar 

  16. Beeck O. Catalysis and the adsorption of hydrogen on metal catalysts. Adv Catal. 1950;2:151–95.

    CAS  Google Scholar 

  17. Wahba M, Kemball C. Heats of adsorption of ammonia and hydrogen on metal films. Trans Faraday Soc. 1953;49:1351–60.

    Article  CAS  Google Scholar 

  18. Bagg J, Tompkins FC. Calorimetric heats of sorption of gases on evaporated iron film. Trans Faraday Soc. 1955;51:1071–80.

    Article  CAS  Google Scholar 

  19. Klemperer DF, Stone FS. Heats of adsorption on evaporated nickel films. Proc R Soc (Lond). 1957;243:375–99.

    Article  Google Scholar 

  20. Brennan D, Hayward DO, Trapnell BMW. The calorimetric determination of the heats of adsorption of oxygen on evaporated metal films. Proc R Soc (Lond). 1960;256:81–105.

    Article  CAS  Google Scholar 

  21. Brennan D, Hayward DO, Trapnell BMW. Calorimetric determination of the heat of adsorption of oxygen on evaporated films of germanium and silicon. J Phys Chem Solids. 1960;14:117–23.

    Article  CAS  Google Scholar 

  22. Brennan D, Jackson JM. Distribution of adsorbate within evaporated metal films. Proc Chem Soc. 1963:375–376.

  23. Brennan D. General discussion. Discuss Faraday Soc. 1966;41:106–10.

    Article  Google Scholar 

  24. Brennan D, Hayes FH. Heat of adsorption of hydrogen on evaporated films of tungsten and of nickel. Trans Faraday Soc. 1964;60:589–96.

    Article  CAS  Google Scholar 

  25. Brennan D, Graham MJ. Heats of adsorption of oxygen on evaporated films of molybdenum, tungsten, cobalt, and nickel at 77, 90, and 273 °K and nature of adsorbed layers. Discuss Faraday Soc. 1966;41:95–101.

    Article  Google Scholar 

  26. Wedler G. Electronic interaction and heat of adsorption for the chemisorption of gases on vapor-deposited metal films. I. Adiabatic calorimeter for the simultaneous measurement of heat of adsorption and film resistance. Z Phys Chem (Frankf). 1960;24:73–86.

    Article  CAS  Google Scholar 

  27. Wedler G, Strothenk H. Calorimetric determination of the differential heats of chemisorption of hydrogen on titanium films at 77 °K. Ber Bunsen Ges Phys Chem. 1966;70:214–20.

    CAS  Google Scholar 

  28. Wedler G. General discussion. Discuss Faraday Soc. 1966;41:104–5.

    Google Scholar 

  29. Wedler G. Adsorption and Reaction. In: Wissmann P, editor. Thin metal films and gas chemisorption. Vol. 32. Amsterdam: Elsevier; 1987.

  30. Wedler G. The role of adsorption calorimetry in the study of surface phenomena. J Thermal Anal. 1978;14:15–26.

    Article  CAS  Google Scholar 

  31. Černý S, Ponec V, Hladek L. Calorimetric heats of adsorption of hydrogen on molybdenum films. J Catal. 1966;5:27–38.

    Article  Google Scholar 

  32. Hladek L. A self-balancing and recording A.C. bridge for a Beeck-type adsorption calorimeter. J Sci Instrum. 1965;42:198–202.

    Article  CAS  Google Scholar 

  33. Kovar M, Černý S. Calorim Anal Therm XX–XXI (Proc Conf Assoc Franc Calorim et Anal Therm).

  34. Kovar M, Dvorak L, Černý S. Application of pyroelectric properties of LiTaO3 single crystal to microcalorimetric measurement of the heat of adsorption. Appl Surf Sci. 1994;74:51–9.

    Article  CAS  Google Scholar 

  35. Dvorak L, Kovar M, Černý S. A new approach to adsorption microcalorimetry based on a LiTaO3 pyroelectric temperature sensor and a pulsed molecular beam. Thermochim Acta. 1994;245:163–71.

    Article  CAS  Google Scholar 

  36. Borroni-Bird CE, King DA. An ultrahigh vacuum single crystal adsorption microcalorimeter. Rev Sci Instrum. 1991;62:2177–85.

    Article  CAS  Google Scholar 

  37. Yeo YY, Wartnaby CE, King DA. Calorimetric measurement of the energy difference between two solid surface phases. Science. 1995;268:1731–2.

    Article  CAS  Google Scholar 

  38. Borroni-Bird CE, Al-Sarraf N, Andersson S, King DA. Single crystal adsorption microcalorimetry. Chem Phys Lett. 1991;183:516–20.

    Article  CAS  Google Scholar 

  39. Vattuone L, Yeo YY, Kose R, King DA. Energetics and kinetics of the interaction of acetylene and ethylene with Pd{100} and Ni{100}. Surf Sci. 2000;447:1–14.

    Article  CAS  Google Scholar 

  40. Kose R, Brown WA, King DA. Calorimetric heats of dissociative adsorption for O2 on Rh{100}. Surf Sci. 1998;402:856–60.

    Article  Google Scholar 

  41. Yeo YY, Vattuone L, King DA. Calorimetric investigation of NO and CO adsorption on Pd100 and the influence of preadsorbed carbon. J Chem Phys. 1997;106:1990–6.

    Article  CAS  Google Scholar 

  42. Vattuone L, Yeo YY, King DA. Adatom bond energies and lateral interaction energies from calorimetry: NO, O2, and N2 adsorption on Ni {100}. J Chem Phys. 1996;104:8096–102.

    Article  CAS  Google Scholar 

  43. Stuck A, Wartnaby CE, Yeo YY, Stuckless JT, Al-Sarraf N, King DA. An improved single crystal adsorption calorimeter. Surf Sci. 1996;349:229–40.

    Article  CAS  Google Scholar 

  44. Yeo YY, Vattuone L, King DA. Energetics and kinetics of CO and NO adsorption on Pt 100: restructuring and lateral interactions. J Chem Phys. 1996;104:3810–21.

    Article  CAS  Google Scholar 

  45. Stuckless JT, Frei NA, Campbell CT. A novel single-crystal adsorption calorimeter and additions for determining metal adsorption and adhesion energies. Rev Sci Instrum. 1998;69:2427–38.

    Article  CAS  Google Scholar 

  46. Crowe MC, Campbell CT. Adsorption microcalorimetry: recent advances in instrumentation and application. Annu Rev Anal Chem. 2011;4:41–58.

    Article  CAS  Google Scholar 

  47. Ajo HM, Ihm H, Moilanen DE, Campbell CT. Calorimeter for adsorption energies of larger molecules on single crystal surfaces. Rev Sci Instrum. 2004;75:4471–80.

    Article  CAS  Google Scholar 

  48. Flores-Camacho JM, Fischer-Wolfarth JH, Peter M, Campbell CT, Schauermann S, Freunda HJ. Adsorption energetics of CO on supported Pd nanoparticles as a function of particle size by single crystal microcalorimetry. Phys Chem Chem Phys. 2011;13:16800–10.

    Article  CAS  Google Scholar 

  49. Fischer-Wolfarth JH, Farmer JA, Flores-Camacho JM, Genest A, Yudanov IV, Rösch N, Campbell CT, Schauermann S, Freund HJ. Particle-size dependent heats of adsorption of CO on supported Pd nanoparticles as measured with a single-crystal microcalorimeter. Phys Rev B. 2010;81:2414161–4.

    Article  CAS  Google Scholar 

  50. Campbell CT, Lytken O. Experimental measurements of the energetics of surface reactions. Surf Sci. 2009;603:1365–72.

    Article  CAS  Google Scholar 

  51. Henry CR. Surface studies of supported model catalysts. Surf Sci Rep. 1998;31:231–325.

    Article  CAS  Google Scholar 

  52. Prinsloo JJ, Gravelle PC. Volumetric and calorimetric study of the adsorption of hydrogen, at 296 K, on supported nickel and nickel-copper catalysts containing preadsorbed carbon monoxide. JCS Faraday I. 1980;76:512–9.

    Article  CAS  Google Scholar 

  53. Prinsloo JJ, Gravelle PC. Volumetric and calorimetric study of the adsorption of hydrogen, at 296 K, on silica-supported nickel and nickel-copper catalysts. JCS Faraday I. 1980;76:2221–8.

    Article  CAS  Google Scholar 

  54. Prinsloo JJ, Gravelle PC. Calorimetric study of the adsorption of carbon monoxide, at 296 K, on supported nickel and nickel-copper catalysts. JCS Faraday I. 1982;78:273–81.

    Article  CAS  Google Scholar 

  55. Vannice MA, Sen B, Chou P. Modifications required on a power-compensated differential scanning calorimeter to obtain heat of adsorption measurements. Rev Sci Instrum. 1987;58:647–53.

    Article  CAS  Google Scholar 

  56. Vannice MA, Hasselbring LC, Sen B. Direct measurements of heats of adsorption on platinum catalysts 1. H2 on Pt dispersed on SiO2, A12O3, SiO2–A12O3, and TiO2. J Catal. 1985;95:57–61.

    Article  CAS  Google Scholar 

  57. Vannice MA, Hasselbring LC, Sen B. Metal-support effects on H2 and CO heats of adsorption on TiO2-supported platinum. J Phys Chem. 1985;89:2972–3.

    Article  CAS  Google Scholar 

  58. Vannice MA, Hasselbring LC, Sen B. Direct measurements of heats of adsorption on platinum catalysts II. CO on Pt dispersed on SiO2, A12O3, SiO2–A12O3, and TiO2. J Catal. 1986;97:66–71.

    Article  CAS  Google Scholar 

  59. Sen B, Vannice MA, Chou P. Direct measurements of heats of adsorption on platinum catalysts iii. potential errors with differential scanning calorimeters. J Catal. 1986;101:517–21.

    Article  CAS  Google Scholar 

  60. Sen B, Vannice MA. Enthalpy changes during O2 adsorption and H2 titration of adsorbed oxygen on platinum. J Catal. 1991;129:31.

    Article  CAS  Google Scholar 

  61. Cobes J, Phillips J. Differential calorimetric characterization of the oxygen–hydrogen interaction on graphite-supported iridium catalyst particles. J Phys Chem. 1991;95:8776–81.

    Article  CAS  Google Scholar 

  62. Wunder RW, Cobes JW, Phillips J, Radovic LR, Lopez-Peinado AJ, Carrasco-Marin F. Microcalorimetric study of the absorption of hydrogen by palladium powders and carbon-supported palladium particles. Langmuir. 1993;9:984–92.

    Article  CAS  Google Scholar 

  63. Gatte RR, Phillips J. Microcalorimetric study of the progressive oxidation of the surface of graphite-supported iron microcrystals. Langmuir. 1989;5:758–66.

    Article  CAS  Google Scholar 

  64. Phillips J, Gatte RR. Microcalorimetric study of oxygen adsorption on graphite-supported rhodium microcrystals. Thermochim Acta. 1989;154:13–25.

    Article  CAS  Google Scholar 

  65. Gatte RR, Phillips J. Microcalorimetric study of the surface structure of graphite-supported iron/rhodium catalyst particles. J Catal. 1989;116:49–60.

    Article  CAS  Google Scholar 

  66. Gatte RR, Phillips J. True differential microcalorimetric study of the structure of bimetallic catalyst particles. Thermochim Acta. 1988;133:149–54.

    Article  CAS  Google Scholar 

  67. Wunder RW, Phillips J. Dynamic phase behavior of graphite-supported bimetallic particles. 4. Equimolar Fe–Pd. J Phys Chem. 1994;98:12329–36.

    Article  CAS  Google Scholar 

  68. Wunder RW, Phillips J. Structure of bimetallic particles: nonequimolar graphite-supported Fe–Pd. J Phys Chem. 1996;100:14430–6.

    Article  CAS  Google Scholar 

  69. da Silva SM, Phillips J. Hydroisomerization probe of the catalytic and structural behavior of iron—rhodium particles supported on refractory oxide supports. J Mol Catal. 1994;94:97–116.

    Article  Google Scholar 

  70. Phillips J, Auroux A, Bergeret G, Massardier J, Renouprez A. Phase behavior of palladium-silver particles supported on silica. J Phys Chem. 1993;97:3565–70.

    Article  CAS  Google Scholar 

  71. Sharma SB, Miller JT, Dumesic JA. Microcalorimetric study of silica- and zeolite-supported platinum catalysts. J Catal. 1994;148:198–204.

    Article  CAS  Google Scholar 

  72. Sharma SB, Ouraipryvan P, Nair HA, Balaraman P, Root TW, Dumesic JA. Microcalorimetric 13C NMR spectroscopic, and reaction kinetic-studies of silica-supported and L-zeolite-supported platinum catalysts for n-hexane conversion. J Catal. 1994;150:234–42.

    Article  CAS  Google Scholar 

  73. Cortright RD, Dumesic JA. Microcalorimetric, spectroscopic, and kinetic studies of silica supported Pt and Pt/Sn catalysts for isobutane dehydrogenation. J Catal. 1994;148:771–8.

    Article  CAS  Google Scholar 

  74. Cortright RD, Dumesic JA. Effects of potassium on silica-supported Pt and Pt/Sn catalysts for isobutane dehydrogenation. J Catal. 1995;15:576–83.

    Article  Google Scholar 

  75. Natal-Santiago MA, Podkolzin SG, Cortright RD, Dumesic JA. Microcalorimetric studies of interactions of ethene, isobutene, and isobutane with silica-supported Pd, Pt, and PtSn. Catal Lett. 1997;45:155–63.

    Article  CAS  Google Scholar 

  76. Cortright RD, Dumesic JA. L-zeolite-supported platinum and platinum/tin catalysts for isobutane dehydrogenation. Appl Catal A Gen. 1995;129:101–15.

    Article  CAS  Google Scholar 

  77. Borgard GD, Molvik S, Balaraman P, Root TW, Dumesic JA. Microcalorimetric and infrared spectroscopic studies of CO, C2H4, N2O, and O2 adsorption on Cu-Y zeolite. Langmuir. 1995;11:2065–70.

    Article  CAS  Google Scholar 

  78. Shen J, Spiewak BE, Dumesic JA. Microcalorimetric studies of CO and H2 adsorption on nickel, nickel–boride, and nickel–phosphide catalysts. Langmuir. 1997;13:2735–9.

    Article  CAS  Google Scholar 

  79. Bhatia S, Engelke F, Pruski M, Gerstein BC, King TS. Interaction of hydrogen with supported Ru catalysts: high pressure in situ NMR studies. J Catal. 1994;147:455–64.

    Article  CAS  Google Scholar 

  80. Narayan RL, Savargaonkar N, Pruski M, King TS. In: Hightower JW, Delgass WN, Iglesia E, Bell AT, editors. 11th International Congress on Catalysis - 40th Anniversary. Studies in surface science and catalysis. vol. 101. Amsterdam: Elsevier Science BV; 1996.

  81. Rojo JM, Belzunegui JP, Sanj J, Guil JM. Hydrogen adsorption on rhodium particles supported on strontium titanate as followed by 1H NMR and microcalorimetry. J Phys Chem. 1994;98:13631–5.

    Article  CAS  Google Scholar 

  82. Stradella L. Calorimetric determination of the heat of adsorption of test molecules to check reactivity of bismuth molybdate. New J Chem. 1988;12:835–8.

    CAS  Google Scholar 

  83. Bond GC, Sermon PA. Gold catalysts for olefin hydrogenation. Transmutation of catalytic properties. Gold Bull (Geneva). 1973;6:102–5.

    Article  CAS  Google Scholar 

  84. Benson JE, Hwang HS, Boudart M. Hydrogen-oxygen titration method for the measurement of supported palladium surface areas. J Catal. 1973;30:146–53.

    Article  CAS  Google Scholar 

  85. Guerrero-Ruiz A, Maroto-Valiente A, Cerro-Alarco´n M, Bachiller-Baeza B, Rodrı´guez-Ramos I. Surface properties of supported metallic clusters as determined by microcalorimetry of CO chemisorption. Top Catal. 2002;19:303–11.

    Article  CAS  Google Scholar 

  86. Spiewak BE, Dumesic JA. Microcalorimetric measurements of differential heats of adsorption on reactive catalyst surfaces. Thermochim Acta. 1997;290:43–53.

    Article  CAS  Google Scholar 

  87. Gandao Z, Coq B, Menorval LC, Tichit D. Comparative behaviour of extremely dispersed Pt/Mg(Al)O and Pt/Al2O3 for the chemisorption of hydrogen, CO and CO2. Appl Catal A Gen. 1996;147:395–406.

    Article  Google Scholar 

  88. Yeo YY, Vattuone L, King DA. Calorimetric heats for CO and oxygen adsorption and for the catalytic CO oxidation reaction on Pt{111}. J Chem Phys. 1997;106:392–401.

    Article  CAS  Google Scholar 

  89. Podkolzin SG, Shen J, de Pablo JJ, Dumesic JA. Equilibrated adsorption of CO on silica-supported Pt catalysts. J Phys Chem B. 2000;104:4169–80.

    Article  CAS  Google Scholar 

  90. Boudart M, Rumpf F. The catalytic oxidation of CO and structure insensitivity. React Kinet Catal Lett. 1987;35:95–105.

    Article  CAS  Google Scholar 

  91. Steininger H, Lehwald S, Ibah H. On the adsorption of CO on Pt(111). Surf Sci. 1982;123:264–82.

    Article  CAS  Google Scholar 

  92. Persson BNJ, Tushaus M, Bradshaw AM. On the nature of dense CO adlayers. J Chem Phys. 1990;92:5034–46.

    Article  CAS  Google Scholar 

  93. Hayden BE, Bradshaw AM. The adsorption of CO on Pt(111) Studied by infrared reflection—absorption spectroscopy. Surf Sci. 1983;125:787–802.

    Article  CAS  Google Scholar 

  94. Lantz JB, Gonzalez RD. Development of a new isothermal calorimeter. heats of hydrogen adsorption on supported platinum versus crystallite size. J Catal. 1976;41:293–302.

    Article  CAS  Google Scholar 

  95. Ji Y, Koot V, van der Eerden AMJ, Weckhuysen BM, Koningsberger DC, Ramaker DE. A three-site Langmuir adsorption model to elucidate the temperature, pressure, and support dependence of the hydrogen coverage on supported Pt particles. J Catal. 2007;245:415–27.

    Article  CAS  Google Scholar 

  96. Efremov AA, Bakhmutova NI, Pankratiev YD, Kuznetsov BN. Microcalorimetric, IR spectroscopic and thermodesorption studies of carbon monoxide interaction with γ-alumina-supported rhodium, palladium, iridium, and platinum. React Kinet Catal Lett. 1985;28:103–10.

    Article  CAS  Google Scholar 

  97. Li M, Shen J. Microcalorimetric and infrared spectroscopic studies of CO and C2H4 adsorption on Pd/SiO2 and Pd–Ag/SiO2 catalysts. Mat Chem Phys. 2001;68:204–9.

    Article  CAS  Google Scholar 

  98. Dropsch H, Baerns M. CO adsorption on supported Pd catalysts studied by adsorption microcalorimetry and temperature programmed desorption. Appl Catal A Gen. 1997;158:163–83.

    Article  CAS  Google Scholar 

  99. Maroto-Valientea A, RodrõÂguez-Ramos I, Guerrero-Ruiz A. Determination of the surface states of metallic clusters supported on alumina using microcalorimetry of CO adsorption. Thermochim Acta. 2001;379:195–9.

    Article  Google Scholar 

  100. Conrad H, Ertl G, Koch J, Latta EE. Adsorption of carbon monoxide on palladium single crystal surfaces. Surf Sci. 1974;43:462–80.

    Article  CAS  Google Scholar 

  101. Haruta M. Gold as a novel catalyst in the 21st century: preparation working mechanism and applications. Gold Bull. 2004;37:27–36.

    Article  CAS  Google Scholar 

  102. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal. 1993;144:175–92.

    Article  CAS  Google Scholar 

  103. Haruta M. Size- and support-dependency in the catalysis of gold. Catal Today. 1997;36:153–66.

    Article  CAS  Google Scholar 

  104. Hayashi T, Tanaka K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal. 1998;178:566–75.

    Article  CAS  Google Scholar 

  105. Tripathi AK, Kamble VS, Gupta NM. Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO + O2 over Au/Fe2O3, Fe2O3, and polycrystalline gold catalysts. J Catal. 1999;187:332–42.

    Article  CAS  Google Scholar 

  106. Lin JN, Chen JH, Hsiao CY, Kang YM, Wan BZ. Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation. Appl Catal B Environ. 2002;36:19–29.

    Article  CAS  Google Scholar 

  107. Luengnaruemitchai A, Thoa DTK, Osuwan S, Gulari E. A comparative study of Au/MnOx and Au/FeOx catalysts for the catalytic oxidation of CO in hydrogen rich stream. Int J Hydrog Energy. 2005;30:981–7.

    Article  CAS  Google Scholar 

  108. Hartshorn H, Pursell CJ, Chandler BD. Adsorption of CO on supported gold nanoparticle catalysts: a comparative study. J Phys Chem C. 2009;113:10718–25.

    Article  CAS  Google Scholar 

  109. Derrouiche S, Gravejat P, Bianchi D. Heats of adsorption of linear CO species adsorbed on the Au and Ti + δ sites of a 1% Au/TiO2 catalyst using in situ FTIR spectroscopy under adsorption equilibrium. J Am Chem Soc. 2004;126:13010–5.

    Article  CAS  Google Scholar 

  110. Zhao Z, Diemant T, Rosenthal D, Christmann K, Bansmann J, Rauscher H, Behm RJ. Au/TiO2/Ru(0 0 0 1) model catalysts and their interaction with CO. Surf Sci. 2006;600:4992–5003.

    Article  CAS  Google Scholar 

  111. Diemant T, Hartmann H, Bansmann J, Behm RJ. CO adsorption energy on planar Au/TiO2 model catalysts under catalytically relevant conditions. J Catal. 2007;252:171–7.

    Article  CAS  Google Scholar 

  112. Meier DC, Goodman DW. The influence of metal cluster size on adsorption energies: CO adsorbed on Au clusters supported on TiO2. J Am Chem Soc. 2004;126:1892–9.

    Article  CAS  Google Scholar 

  113. Gottfried JM, Schmidt KJ, Schroeder SLM, Christmann K. Adsorption of carbon monoxide on Au(1 1 0) − (1 × 2). Surf Sci. 2003;536:206–24.

    Article  CAS  Google Scholar 

  114. McElhiney G, Pritchard J. The adsorption of xenon and carbon monoxide on gold(100). J Surf Sci. 1976;60:397–410.

    Article  CAS  Google Scholar 

  115. Menegazzo F, Manzoli M, Chiorino A, Boccuzzi F, Tabakova T, Signoretto M, Pinna F, Pernicone N. Quantitative determination of gold active sites by chemisorption and by infrared measurements of adsorbed CO. J Catal. 2006;237:431–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindom Saha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A. A simultaneous volumetric adsorption–isothermal titration calorimetry study of small molecules on supported metallic nanoparticles. J Therm Anal Calorim 124, 1623–1634 (2016). https://doi.org/10.1007/s10973-016-5262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5262-8

Keywords

Navigation