Skip to main content
Log in

Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu–Al–Ni shape-memory alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cu–Al–Ni shape-memory alloys are considered as high potential materials for high-temperature applications. The aim of this research was to evaluate the increasing strain value and Cr addition on martensite morphology, transformation temperatures, mechanical, and corrosion properties of Cu–Al–Ni alloy. To this purpose, thermomechanical treatment which includes successive hot rolling, annealing, and hydraulic pressing passes was applied. In addition, tensile test, differential scanning calorimetry, and potentiodynamic polarization were carried out to compare the properties of prepared samples. The results showed that by increasing the applied strain, morphological transition from wide laths to acicular martensite with monoclinic structure was occurred. The chromium element acts as a grain refiner in this alloy by restricting the grain growth. This element leads to microstructural embrittlement, diminishing the mechanical properties. Besides, the influence of applied strain and Cr content on corrosion resistance of Cu–Al–Ni alloy was reciprocal. Despite suitable effect of Cr on corrosion behavior, increasing the applied strain facilitated the corrosion rate. Another subtle point is that both Cr addition and higher strain value reduce austenite to martensite transformation temperatures and hysteresis temperature interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karagoz Z, Aksu Canbay C. Relationship between transformation temperatures and alloying elements in Cu–Al–Ni shape memory alloys. J Therm Anal Calorim. 2013;114:1069–74.

    Article  CAS  Google Scholar 

  2. Gastien R, Sade M, Lovey FC. Interaction between martensitic structure and defects in β ↔ β′ + γ′ cycling in CuAlNi single crystals. Model for the inhabitation of γ′ martensite. Acta Mater. 2008;56:1570–6.

    Article  CAS  Google Scholar 

  3. Bouabdallah M, Baguenane-Benelia G, Saadi A, Cheniti H, Gachon JC, Patoor E. Precipitation sequence during ageing in β1 phase of Cu–Al–Ni shape memory alloy. J Therm Anal Calorim. 2013;112:279–83.

    Article  CAS  Google Scholar 

  4. Danoiu S, Rotaru P, Degeratu S, Rizescu S, Bizdoaca NG. Shape memory alloy-based smart module structure working under intense thermos-mechanical stress. J Therm Anal Calorim. 2014;118:1323–30.

    Article  CAS  Google Scholar 

  5. Gastien R, Corbellani CE, Alvarez Villar HN, Sade M, Lovey FC. Pseudoelastic cycling in Cu–14.3Al–4.1Ni (wt%) single crystals. Mater Sci Eng A. 2003;349:191–6.

    Article  Google Scholar 

  6. Gastien R, Corbellani CE, Sade M, Lovey FC. Thermal and pseudoelastic cycling in Cu–14.1Al–4.2Ni (wt%) single crystals. Acta Mater. 2005;53:1685–91.

    Article  CAS  Google Scholar 

  7. Morris MA. Influence of boron additions on ductility and microstructure of shape memory Cu–Al–Ni alloys. Scr Metall Mater. 1991;25:2541–6.

    Article  CAS  Google Scholar 

  8. Aksu Canbay C, Keskin A. Effects of vanadium and cadmium on transformation temperatures of Cu–Al–Mn shape memory alloy. J Therm Anal Calorim. 2014;118:1407–12.

    Article  CAS  Google Scholar 

  9. Gastien R, Corbellani CE, Sade M, Lovey FC. A σ-T diagram analysis regarding the γ′ inhabitation in β ↔ β′ + γ′ cycling in CuAlNi single crystals. Scr Mater. 2006;54:1451–5.

    Article  CAS  Google Scholar 

  10. Saud SN, Hamzah E, Abubakar T, Bakhsheshi-Rad HR, Zamri M, Tanemura M. Effects of Mn additions on the structure, mechanical properties, and corrosion behavior of Cu–Al–Ni shape memory alloys. J Mater Eng Perform. 2014. doi:10.1007/s11665-014-1134-1.

  11. Recarte V, Perez-Landazabal JI, Rodriquez PP, Bocanegra EH, No ML, San Juan J. Thermodynamics of thermally induced martensite transformations in Cu–Al–Ni shape memory alloys. Acta Mater. 2004;52:3941–8.

    Article  CAS  Google Scholar 

  12. Colic M, Rudolf R, Stamenkovic D, Anzel I, Vucevic D, Jenko M, Lazic V, Lojen G. Relationship between microstructure, cytotoxicity and corrosion properties of Cu–Al–Ni shape memory alloy. Acta Biomater. 2010;6:308–17.

    Article  CAS  Google Scholar 

  13. Yildiz K, Kok M, Dagdelen F. Cobalt addition effects on martensitic transformation and microstructural properties of high-temperature Cu–Al–Fe shape-memory alloys. J Therm Anal Calorim. 2015;120:1227–32.

    Article  CAS  Google Scholar 

  14. Recarte V, Perez-Landazabal JI, Ibarra A, No ML, San Juan J. High temperature β phase decomposition process in a Cu–Al–Ni shape memory alloy. Mater Sci Eng A. 2004;378:238–42.

    Article  Google Scholar 

  15. Montecinos S, Cuniberti A, Romero R. Effect of grain size on the stress-temperature relationship in a β Cu–Al–Be shape memory alloy. Intermetallics. 2011;19:35–8.

    Article  CAS  Google Scholar 

  16. Perez-Landazabal JI, Recarte V, Sanchez-Alarcos V, No ML, San Juan J. Study of the stability and decomposition process of the β phase in Cu–Al–Ni shape memory alloys. Mater Sci Eng A. 2006;438–440:734–7.

    Article  Google Scholar 

  17. Yildiz K, Kok M. Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys. J Therm Anal Calorim. 2014;115:1509–14.

    Article  CAS  Google Scholar 

  18. Recarte V, Perez-Saez RB, Bocanegra BH, No ML, San Juan J. Influence of Al and Ni concentration on the martensitic transformation in Cu–Al–Ni shape memory alloys. Metall Mater Trans A. 2002;33:2581–91.

    Article  Google Scholar 

  19. Perez-Landazabal JI, Recarte V, No ML, San Juan J. Determination of the order in γ1 intermetallic phase in Cu–Al–Ni shape memory alloy. Intermetallics. 2003;11:927–30.

    Article  CAS  Google Scholar 

  20. Aksu Canbay C, Aydogdu A. Thermal analysis of Cu–14.82 wt% Al–0.4 wt% Be shape memory alloy. J Therm Anal Calorim. 2013;113:731–7.

    Article  CAS  Google Scholar 

  21. Chentouf SM, Bouabdallah M, Gachon JC, Patoor E, Sari A. Microstructural and thermodynamic study of hypoeutectic Cu–Al–Ni shape memory alloys. J Alloy Compd. 2009;470:507–14.

    Article  CAS  Google Scholar 

  22. Chang SH. Influence of chemical composition on the damping characteristics of Cu–Al–Ni shape memory alloys. Mater Chem Phys. 2011;125:358–63.

    Article  CAS  Google Scholar 

  23. Saud SN, Hamzah E, Abubakar T, Zamri M, Tanemura M. Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J Therm Anal Calorim. 2014;118:111–22.

    Article  CAS  Google Scholar 

  24. San Juan J, No ML, Schuh CA. Superelastic cycling of Cu–Al–Ni shape memory alloy micropillars. Acta Mater. 2012;60:4093–106.

    Article  CAS  Google Scholar 

  25. Lovey FC, Torra V. Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu–Zn–Al. Prog Mater Sci. 1999;44:189–289.

    Article  CAS  Google Scholar 

  26. Yildiz K. Oxidation of high-temperature Cu–Al–Fe shape memory alloy. J Therm Anal Calorim. 2016;123:409–12.

    Article  CAS  Google Scholar 

  27. Recarte V, Perez-Saez RB, Bocanegra EH, No ML, San Juan J. Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. Mater Sci Eng A. 1999;273–275:380–4.

    Article  Google Scholar 

  28. Sun YS, Lorimer GW, Ridley N. Microstructure and its development in Cu–Al–Ni alloys. Metall Mater Trans A. 1990;21:575–88.

    Article  Google Scholar 

  29. Dagdelen F, Gokhan T, Aydogdu A, Aydogdu Y, Adiguzel O. Effects of thermal treatments on transformation behavior in shape memory Cu–Al–Ni alloys. Mater Lett. 2003;57:1079–85.

    Article  CAS  Google Scholar 

  30. Badawy WA, El-Rabiee MM, Helal NH, Nady H. Effect of nickel content on the electrochemical behavior of Cu–Al–Ni alloys in chloride free neutral solutions. Electrochim Acta. 2010;56:913–8.

    Article  CAS  Google Scholar 

  31. Kuo HH, Wang WH, Hsu YF, Huang CA. The corrosion behavior of Cu–Al and Cu–Al–Be shape memory alloys in 0.5 M H2SO4 solution. Corros Sci. 2006;48:4352–64.

    Article  CAS  Google Scholar 

  32. Ismail KM, Badawy WA. Electrochemical and XPS investigations of cobalt in KOH solutions. J Appl Electrochem. 2000;30:1303–11.

    Article  CAS  Google Scholar 

  33. Al-Kharafi FM, Badawy WA. Electrochemical behavior of vanadium in aqueous solutions of different pH. Electrochim Acta. 1997;42:579–86.

    Article  CAS  Google Scholar 

  34. Wharton JA, Barik RC, Kear G, Wood RJK, Stokes KR, Walsh FC. The corrosion of nickel–aluminum bronze in seawater. Corros Sci. 2005;47:3336–67.

    Article  CAS  Google Scholar 

  35. Bouabdallah M, Cizeron G. Caractérisation des changements de phase développés dans un alliage AMF du type Cu–Al–Ni, par dilatométrie de trempe et microcalorimétrie différentielle. Eur Phys J Appl Phys. 1998;1:163–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, M., Ketabchi, M. Effect of chromium element on transformation, mechanical and corrosion behavior of thermomechanically induced Cu–Al–Ni shape-memory alloys. J Therm Anal Calorim 127, 2113–2123 (2017). https://doi.org/10.1007/s10973-016-5839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5839-2

Keywords

Navigation