Skip to main content
Log in

Nucleation ability of nonmetallic organophosphate derivatives in isotactic polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nonmetallic organophosphate derivatives of ammonium (An), triethylammonium (CAn), and quaternary phosphonium (SP) salts of 2,2′-methylene-bis-(4,6-di-tert-butylphenyl) phosphate were synthesized and characterized. Their nucleation effects on isotactic poly(propylene) (iPP) were investigated in detail. The melting temperature of An, CAn, and SP was 262, 208, and 271 °C, respectively, which was near to the processing temperature of iPP (220 °C). Their particle morphologies revealed a great difference. An with a glossy rod-like structure can be uniformly dispersed in iPP matrix, while the bulk-like and layer structures of CAn and SP cannot play the same role. Moreover, with the incorporation of these derivatives at the same mass (0.15 mass%), iPP/An possesses an increased crystallization peak temperature of 15 °C and significant enhanced optical property as compared to neat iPP, but iPP/CAn and iPP/SP do not showed an overall enhanced property. Furthermore, nucleation effects of the compound nucleating agent consisting of these derivatives and sodium laurate (SNa) (a conventional compounded composition) on iPP were examined to clarify the role of particle morphology on the dispersibility in iPP. The results demonstrated that SP-SNa presented the most uniform dispersion in iPP, and the haze value of iPP/SP-SNa (concentration of 0.15 mass% of SP-SNa) was decreased to 11.8 %, showing the best synergistic effect of layer shape of SP with SNa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Quan YN, Li HH, Yan SK. Comparison study on the heterogeneous nucleation of isotactic polypropylene by its own fiber and α nucleating agents. Ind Eng Chem Res. 2013;52:4772–8.

    Article  CAS  Google Scholar 

  2. Libster D, Aserin A, Garti N. Advanced nucleating agents for polypropylene. Polym Adv Technol. 2007;18:685–95.

    Article  CAS  Google Scholar 

  3. Wang K, Zhou CJ, Tang CY, Zhang Q, Du RN, Fu Q, Li L. Rheologically determined negative influence of increasing nucleating agent content on the crystallization of isotactic polypropylene. Polymer. 2009;50:696–706.

    Article  CAS  Google Scholar 

  4. Bai HW, Deng H, Zhang Q, Wang K, Fu Q, Zhang ZJ, Men YF. Effect of annealing on the microstructure and mechanical properties of polypropylene with oriented shish-kebab structure. Polym Int. 2012;61:252–8.

    Article  CAS  Google Scholar 

  5. Dong M, Guo ZX, Su ZQ, Yu J. Study of the Crystallization behaviors of isotactic polypropylene with sodium benzoate as a specific versatile nucleating agent. J Polym Sci B: Polym Phys. 2008;46:1183–92.

    Article  CAS  Google Scholar 

  6. Fillon B, Wittmann JC, Lotz B, Thierry A. Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci B: Polym Phys. 1993;31:1383–93.

    Article  CAS  Google Scholar 

  7. Gahleitner M, Grein C, Kheirandish S, Wolfschwenger J. Nucleation of polypropylene homo- and copolymers. Int Polym Process. 2011;26:2–20.

    Article  CAS  Google Scholar 

  8. Wittmann JC, Lotz B. Epitaxial crystallization of polyethylene on organic substrates: a reappraisal of the mode of action of selected nucleating agents. J Polym Sci: Polym Phys. 1981;19:1837–51.

    CAS  Google Scholar 

  9. Stocker W, Schumacher M, Graff S, Thierry A, Wittmann JC, Lotz B. Epitaxial crystallization and AFM investigation of a frustrated polymer structure: isotactic poly(propylene), α phase. Macromolecules. 1998;31:807–14.

    Article  CAS  Google Scholar 

  10. Alcazar D, Ruan J, Thierry A, Lotz B. Structural matching between the polymeric nucleating agent isotactic poly(vinylcyclohexane) and isotactic polypropylene. Macromolecules. 2006;39:2832–40.

    Article  CAS  Google Scholar 

  11. Yoshimoto S, Ueda T, Yamanaka K, Kawaguchi A, Tobita E, Haruna T. Epitaxial act of sodium 2,2′- methylene-bis-(4,6-di-t-butylphenylene). Polymer. 2001;42:9627–31.

    Article  CAS  Google Scholar 

  12. Urushihara T, Okada K, Watanabe K, Toda A, Tobita E, Kawamoto N, Hikosaka M. Polymer J. 2007;39:55–64.

    Article  CAS  Google Scholar 

  13. Patil N, Invigorito C, Gahleitner M, Rastogi S. Influence of a particulate nucleating agent on the quiescent and flow-induced crystallization of isotactic polypropylene. Polymer. 2013;54:5883–91.

    Article  CAS  Google Scholar 

  14. Okada K, Watanabe K, Urushihara T, Toda A, Hikosaka M. Role of epitaxy of nucleating agent (NA) in nucleation mechanism of polymers. Polymer. 2007;48:401–8.

    Article  CAS  Google Scholar 

  15. Nagasawa S, Fujimori A, Masuko T, Iguchi M. Crystallisation of polypropylene containing nucleators. Polymer. 2005;46:5241–50.

    Article  CAS  Google Scholar 

  16. Urushihara T, Okada K, Watanabe K, Toda A, Kawamoto N, Hikosaka M. Acceleration mechanism in critical nucleation of polymers by epitaxy of nucleating agent. Polymer J. 2009;41:228–36.

    Article  CAS  Google Scholar 

  17. Zhang YF, Xin Z. Effects of substituted aromatic heterocyclic phosphate salts on properties, crystallization, and melting behaviors of isotactic polypropylene. J Appl Polym Sci. 2006;100:4868–74.

    Article  CAS  Google Scholar 

  18. Zhang YF, Xin Z. Isothermal and nonisothermal crystallization kinetics of isotactic polypropylene nucleated with substituted aromatic heterocyclic phosphate salts. J Appl Polym Sci. 2006;101:3307–16.

    Article  CAS  Google Scholar 

  19. Shi YY, Shao LN, Yang JH, Huang T, Wang YH, Zhang N, Wang Y. Highly improved crystallization behavior of poly(L-lactide) induced by a novel nucleating agent: substituted-aryl phosphate salts. Polym Adv Technol. 2013;24:42–50.

    Article  CAS  Google Scholar 

  20. Hiroyuki A, Inoue K. J.P. Patent, 9-100371 (1997).

  21. Kristiansen M, Werner M, Tervoort T, Smith P. The binary system isotactic polypropylene/bis(3,4-dimethylbenzylidene) sorbitol: phase behavior, nucleation, and optical Properties. Macromolecules. 2003;36:5150–6.

    Article  CAS  Google Scholar 

  22. Balzano L, Portale G, Peters GWM, Rastogi S. Thermoreversible DMDBS phase separation in iPP: the effects of flow on the morphology. Macromolecules. 2008;41:5350–5.

    Article  CAS  Google Scholar 

  23. Abraham F, Kress R, Smith P, Schmidt HW. A new class of ultra-efficient supramolecular nucleating agents for isotactic polypropylene. Macromol Chem Phys. 2013;214:17–24.

    Article  CAS  Google Scholar 

  24. Han LJ, Han CY, Bian JJ, Bian YJ, Lin HJ, Wang XM, Zhang HL, Dong LS. Preparation and characteristics of a novel nano-sized calcium carbonate (nano-CaCO3)-supported nucleating agent of poly(L-lactide). Polym Eng Sci. 2012;52:1474–84.

    Article  CAS  Google Scholar 

  25. Li B, Hu GH, Cao GP, Liu T, Zhao L, Yuan WK. Effect of supercritical carbon dioxide-assisted nano-scale dispersion of nucleating agents on the crystallization behavior and properties of polypropylene. J Supercrit Fluids. 2008;44:446–56.

    Article  CAS  Google Scholar 

  26. Chvatalova L, Navratilova J, Cermak R, Raab M, Obadal M. Joint Effects of molecular structure and processing history on specific nucleation of isotactic polypropylene. Macromolecules. 2009;42:7413–7.

    Article  CAS  Google Scholar 

  27. Zhu PW, Edward G. Distribution of shish-kebab structure of isotactic polypropylene under shear in the presence of nucleating agent. Macromolecules. 2004;37:2658–60.

    Article  CAS  Google Scholar 

  28. Chen K, Yu J, Qiu ZB. Effect of low octavinyl-polyhedral oligomeric silsesquioxanes loading on the crystallization kinetics and morphology of biodegradable poly(ethylene succinate-co-5.1 mol% ethylene adipate) as an efficient nucleating agent. Ind Eng Chem Res. 2013;52:1769–74.

    Article  CAS  Google Scholar 

  29. Gui QD, Xin Z, Zhu WP, Dai GC. Effects of an organic phosphorus nucleating agent on crystallization behaviors and mechanical properties of poly(propylene). J Appl Polym Sci. 2003;88:297–301.

    Article  CAS  Google Scholar 

  30. Androsch R, Iqbal HMN, Schick C. Non-isothermal crystal nucleation of poly(L-lactic acid). Polymer. 2015;81:151–8.

    Article  CAS  Google Scholar 

  31. Santis FD, Pantani R, Titomanlio G. Nucleation and crystallization kinetics of poly(lactic acid). Thermochim Acta. 2011;522:128–34.

    Article  Google Scholar 

  32. Menyhard A, Bredacs M, Simon G, Horvath Z. Determination of nucleus density in semicrystalline polymers from nonisothermal crystallization curves. Macromolecules. 2015;48:2561–9.

    Article  CAS  Google Scholar 

  33. Borysiak S, Klapiszewski L, Bula K, Jesionowski T. Nucleation ability of advanced functional silica/lignin hybrid fillers in polypropylene composites. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5390-1.

    Google Scholar 

Download references

Acknowledgements

The work was financially supported the Science and Technological project of Guizhou Province [2015]3008, National Natural Science Foundation of China (51263003, 51463006), Science and Technology Innovation Talent Team Project in Guizhou Province ([2015]4006), High-level Innovative Talent-training Program in Guizhou Province ([2015]4037), and Guizhou Province Science and Engineering Project ([2013]4005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, L., He, W., Li, J. et al. Nucleation ability of nonmetallic organophosphate derivatives in isotactic polypropylene. J Therm Anal Calorim 127, 2283–2291 (2017). https://doi.org/10.1007/s10973-016-5790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5790-2

Keywords

Navigation