Skip to main content
Log in

Confined crystallization kinetics and scale of semicrystalline block copolymer via non-isothermal method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, differential scanning calorimetry (DSC) was used to study non-isothermal crystallization behaviors of tri-block copolymer poly(styrene)-b-poly(ethylene oxide)-b-poly(styrene) (SEOS). Homopolymer poly(ethylene oxide) (PEO) with almost the same molecular weight as PEO block was also studied comparatively under non-isothermal conditions. From final degree of crystalline X c and given degree of polymerization N, relative degree of crystalline X t at different kinetics stage was changed to be monomer units numbers involved in crystallization process. Based on well-recognized model of PEO crystalline structure, X t at specific stage can be used to calculate the scales of PEO crystalline. Comparing the crystallization behaviors of SEOS with those of PEO, it is indicated that confinement from solidified PS block restricts the mobility of PEO chain to form a pre-ordered structure in initial stage and decreases its lamellae thickness of nucleus that dominates the whole crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manova A, Viktoroya J, Kohler J, Theiler S, Keul H, Piryazev AA, Ivanov DA, Tsarkova L, Moller M. Multilamellar thermoresponsive emulsions stabilized with biocompatible semicrystalline block copolymers. ACS Macro Lett. 2016;5(2):163–7.

    Article  CAS  Google Scholar 

  2. Fasolka MJ, Mayes AM. Block copolymer thin films: physics and applications 1. Annu Rev Mater Res. 2001;31(1):323–55.

    Article  CAS  Google Scholar 

  3. Zha LY, Hu WB. Molecular simulations of confined crystallization in the microdomains of diblock copolymers. Prog Polym Sci. 2015;54–55:232–58.

    Google Scholar 

  4. Zhu L, Cheng SZD, Huang P, Ge Q, Quirk RP, Thomas EL, et al. Nanoconfined polymer crystallization in the hexagonally perforated layers of a self-assembled PS-b-PEO diblock copolymer. Adv Mater. 2002;14(1):31–4.

    Article  CAS  Google Scholar 

  5. Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38(13):3151–212.

    Article  CAS  Google Scholar 

  6. Nojima S, Ohguma Y, Namiki S, Ishizone T, Yamaguchi K. Crystallization of homopolymers confined in spherical or cylindrical nanodomains. Macromolecules. 2008;41(6):1915–8.

    Article  CAS  Google Scholar 

  7. Loo YL, Register RA, Ryan AJ, Dee GT. Polymer crystallization confined in one, two, or three dimensions. Macromolecules. 2001;34(26):8968–77.

    Article  CAS  Google Scholar 

  8. Weimann PA, Hajduk DA, Chu C, Chaffin KA, Brodil JC, Bates FS. Crystallization of tethered polyethylene in confined geometries. J Polym Sci B Polym Phys. 1999;37(16):2053–68.

    Article  CAS  Google Scholar 

  9. Mathot VB. Crystallization of polymers. J Therm Anal Calorim. 2010;102(2):403–12.

    Article  CAS  Google Scholar 

  10. Xin S, Li Y, Zhao H, Bian Y, Li W, Han C, et al. Confinement crystallization of poly(l-lactide) induced by multiwalled carbon nanotubes and graphene nanosheets. J Therm Anal Calorim. 2015;122(1):379–91.

    Article  CAS  Google Scholar 

  11. Kim K-W, Lee B-H, Kim H-J, Sriroth K, Dorgan JR. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim. 2011;108(3):1131–9.

    Article  Google Scholar 

  12. Hauser G, Schmidtke J, Strobl G. The role of co-units in polymer crystallization and melting: new insights from studies on syndiotactic poly(propene-co-octene). Macromolecules. 1998;31(18):6250–8.

    Article  CAS  Google Scholar 

  13. Reid BO, Vadlamudi M, Mamun A, Janani H, Gao H, Hu W, et al. Strong memory effect of crystallization above the equilibrium melting point of random copolymers. Macromolecules. 2013;46(16):6485–97.

    Article  CAS  Google Scholar 

  14. Huang P, Zhu L, Guo Y, Ge Q, Jing AJ, Chen WY, et al. Confinement size effect on crystal orientation changes of poly(ethylene oxide) blocks in poly(ethylene oxide)-b-polystyrene diblock copolymers. Macromolecules. 2004;37(10):3689–98.

    Article  CAS  Google Scholar 

  15. Hsiao M-S, Zheng JX, Leng S, Van Horn RM, Quirk RP, Thomas EL, Chen HL, Hsiao BS, Rong LX, Lotz B, Cheng SZD. Crystal orientation change and its origin in one-dimensional nanoconfinement constructed by polystyrene-block-poly(ethylene oxide) single crystal mats. Macromolecules. 2008;41(21):8114–23.

    Article  CAS  Google Scholar 

  16. Soccio M, Lotti N, Munari A. Influence of block length on crystallization kinetics and melting behavior of poly(butylene/thiodiethylene succinate) block copolymers. J Therm Anal Calorim. 2013;114(2):677–88.

    Article  CAS  Google Scholar 

  17. Kong XH, Tan SS, Yang XN, Li G, Zhou EL, Ma DZ. Isothermal crystallization kinetics of PEO in poly(ethylene terephthalate)-poly(ethylene oxide) segmented copolymers. I. Effect of the soft-block length. J Polym Sci B Polym Phys. 2000;38(24):3230–8.

    Article  CAS  Google Scholar 

  18. Bianchi O, Oliveira RVB, Fiorio R, Martins JDN, Zattera AJ, Canto LB. Assessment of Avrami, Ozawa and Avrami–Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polym Test. 2008;27(6):722–9.

    Article  CAS  Google Scholar 

  19. Lee B, Shin TJ, Lee SW, Yoon J, Kim J, Ree M. Secondary crystallization behavior of poly(ethylene isophthalate-co-terephthalate): time-resolved small-angle X-ray scattering and calorimetry studies. Macromolecules. 2004;37(11):4174–84.

    Article  CAS  Google Scholar 

  20. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2(3):301–24.

    Article  CAS  Google Scholar 

  21. Ozawa T. Non-isothermal crystallization of poly(tetrafluoroethylene). Bull Chem Soc Jpn. 1984;57(4):952–5.

    Article  CAS  Google Scholar 

  22. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19(10):1142–4.

    Article  CAS  Google Scholar 

  23. Cai JL, Li T, Han Y, Zhuang YQ, Zhang XQ. Nonisothermal crystallization kinetics and morphology of self-seeded syndiotactic 1,2-polybutadiene. J Appl Polym Sci. 2006;100(2):1479–91.

    Article  CAS  Google Scholar 

  24. Song J, Chen Q, Ren M, Sun X, Zhang H, Zhang H, et al. Effect of partial melting on the crystallization kinetics of nylon-1212. J Polym Sci B Polym Phys. 2005;43(22):3222–30.

    Article  CAS  Google Scholar 

  25. Ziabicki A. Theoretical analysis of oriented and non isothermal crystallization. Colloid Polym Sci Kolloid-Zeitschrift & Zeitschrift für Polymere. 1974;252:207–21.

    CAS  Google Scholar 

  26. Naguib HF, Aziz MSA, Sherif SM, Saad GR. Synthesis and thermal characterization of poly(ester-ether urethane)s based on PHB and PCL-PEG-PCL blocks. J Polym Res. 2011;18(5):1217–27.

    Article  CAS  Google Scholar 

  27. Kim SS, Lee YM, Cho CS. Synthesis and properties of semi-interpenetrating polymer networks composed of β-chitin and poly(ethylene glycol) macromer. Polymer. 1995;36(23):4497–501.

    Article  CAS  Google Scholar 

  28. Chen J, Wang X, Liu W. Crystallization kinetics of polyethylene/paraffin oil blend sheets formed by thermally induced phase separation with different molecular weights of polyethylene. J Therm Anal Calorim. 2014;118(3):1649–61.

    Article  CAS  Google Scholar 

  29. Messersmith PB, Giannelis EP. Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites. J Polym Sci A Polym Chem. 1995;33(7):1047–57.

    Article  CAS  Google Scholar 

  30. Chen S, Jin J, Zhang J. Non-isothermal crystallization behaviors of poly(4-methyl-pentene-1). J Therm Anal Calorim. 2010;103(1):229–36.

    Article  Google Scholar 

  31. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212.

    Article  CAS  Google Scholar 

  32. Wunderlich B. The growth of crystal. Macromol Phys. 1976;2:115–347.

    Article  Google Scholar 

  33. Ren M, Song J, Zhao Q, Li Y, Chen Q, Zhang H, et al. Primary and secondary crystallization kinetic analysis of nylon 1212. Polym Int. 2004;53(11):1658–65.

    Article  CAS  Google Scholar 

  34. Tardif X, Pignon B, Boyard N, Schmelzer JW, Sobotka V, Delaunay D, et al. Experimental study of crystallization of polyetheretherketone (PEEK) over a large temperature range using a nano-calorimeter. Polym Test. 2014;36:10–9.

    Article  CAS  Google Scholar 

  35. Chen Z, Hay J, Jenkins M. The kinetics of crystallization of poly(ethylene terephthalate) measured by FTIR spectroscopy. Eur Polym J. 2013;49(6):1722–30.

    Article  CAS  Google Scholar 

  36. Floudas G, Tsitsilianis C. Crystallization kinetics of poly(ethylene oxide) in poly(ethylene oxide)-polystyrene-poly(ethylene oxide) triblock copolymers. Macromolecules. 1997;30(15):4381–90.

    Article  CAS  Google Scholar 

  37. Strobl G, Engelke T, Maderek E, Urban G. On the kinetics of isothermal crystallization of branched polyethylene. Polymer. 1983;24(12):1585–9.

    Article  CAS  Google Scholar 

  38. Akpalu Y, Kielhorn L, Hsiao B, Stein R, Russell T, Van Egmond J, et al. Structure development during crystallization of homogeneous copolymers of ethene and 1-octene: time-resolved synchrotron X-ray and SALS measurements. Macromolecules. 1999;32(3):765–70.

    Article  CAS  Google Scholar 

  39. Qiu Z, Mo Z, Yu Y, Zhang H, Sheng S, Song C. Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ketone ether ketone ketone). J Appl Polym Sci. 2000;77(13):2865–71.

    Article  CAS  Google Scholar 

  40. Li H, Lu X, Yang H, Hu J. Non-isothermal crystallization of P (3HB-co-4HB)/PLA blends. J Therm Anal Calorim. 2015;122(2):817–29.

    Article  CAS  Google Scholar 

  41. Takahashi Y, Tadokoro H. Structural studies of polyethers,(–(CH2) mO–) n. X. Crystal structure of poly(ethylene oxide). Macromolecules. 1973;6(5):672–5.

    Article  CAS  Google Scholar 

  42. Chatani Y, Tadokoro H, Saegusa T, Ikeda H. Structural studies of poly(ethylenimine). 1. Structures of two hydrates of poly(ethylenimine): sesquihydrate and dihydrate. Macromolecules. 1981;14(2):315–21.

    Article  CAS  Google Scholar 

  43. Wunderlich B. Crystal melting. London: Academic Press; 1980.

    Google Scholar 

  44. Wu LM, Lisowski M, Talibuddin S, Runt J. Crystallization of poly(ethylene oxide) and melt-miscible PEO blends. Macromolecules. 1999;32(5):1576–81.

    Article  CAS  Google Scholar 

  45. Vyazovkin S, Stone J, Sbirrazzuoli N. Hoffman–Lauritzen parameters for non-isothermal crystallization of poly(ethylene terephthalate) and poly(ethylenie, oxide) melts. J Therm Anal Calorim. 2005;80(1):177–80.

    Article  CAS  Google Scholar 

  46. Liberman SA, Gomes ADS, Macchi EM. Compatibility in poly(ethylene oxide)–poly(methyl methacrylate) blends. J Polym Sci Polym Chem Ed. 1984;22(11):2809–15.

    Article  CAS  Google Scholar 

  47. Alfonso G, Russell T. Kinetics of crystallization in semicrystalline/amorphous polymer mixtures. Macromolecules. 1986;19(4):1143–52.

    Article  CAS  Google Scholar 

  48. Chen E-Q, Weng X, Zhang A, Mann I, Harris FW, Cheng SZ, et al. Primary nucleation in polymer crystallization. Macromol Rapid Commun. 2001;22(8):611–5.

    Article  CAS  Google Scholar 

  49. Zhu L, Cheng SZ, Calhoun BH, Ge Q, Quirk RP, Thomas EL, et al. Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline-amorphous diblock copolymer. J Am Chem Soc. 2000;122(25):5957–67.

    Article  CAS  Google Scholar 

  50. Tsai CC, Leng SW, Jeong KU, Van Horn RM, Wang CL, Zhang WB, Graham MJ, Huang J, Ho RM, Chen YM, Lotz B, Cheng SZD. Supramolecular Structure of beta-cyclodextrin and poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) inclusion complexes. Macromolecules. 2010;43(22):9454–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to National Natural Science Foundation of China (21504042) and Natural Science Foundation of Jiangsu Province (BK2011807) for financial support of this work. This project is also funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. Besides, we give great thanks to Paul Nealey group in IME, University of Chicago, for providing the polymer materials and DSC instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangjun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wang, L. Confined crystallization kinetics and scale of semicrystalline block copolymer via non-isothermal method. J Therm Anal Calorim 127, 2341–2351 (2017). https://doi.org/10.1007/s10973-016-5761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5761-7

Keywords

Navigation