Skip to main content
Log in

Characterization and crystallization kinetics of Er-doped Li2O–Y2O3–P2O5 glass studied by non-isothermal DSC analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work deals with preparation and characterization of Er-doped lithium–yttrium phosphate glass and study of the influence of the particle size in samples on the crystallization process and its kinetics. Two types of prepared samples were used—powder with particle size fractions 90–106 and 200–212 µm and the bulk one. These glassy samples were studied by non-isothermal DSC measurements at heating rates from 2 to 40 K min−1 under nitrogen atmosphere. Obtained data were used for evaluation of the influence of the particle size on the activation energies of the crystallization process by seven the most widely used methods. Activation energies for both powder and bulk samples calculated by model-free methods (Kissinger, Augis–Bennett, and Matusita–Sakka) were similar and independent on the particle size. On the contrary, the influence of the particle size on the activation energy was well described by isoconversional methods (Kissinger–Akahira–Sunose, Starink, Tang, and Flynn–Wall–Ozawa). Moreover, the prepared glassy samples were calcined at temperature over the crystallization temperature and characterized by powder X-ray diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nitsch K, Cihlář A, Klimm D, Nikl M, Rodová M. Na–Gd phosphate glasses: preparation, thermal and scintillating properties. J Therm Anal Calorim. 2005;80:735–8.

    Article  CAS  Google Scholar 

  2. Nikl M. Moderní anorganické scintilační materiály: Fyzika a aplikace. Pokroky matematiky fyziky a astronomie. 2003;48(4):294–307.

    Google Scholar 

  3. Nitsch K, Rodová M. Crystallization study of Na–Gd phosphate glass using non-isothermal DTA. J Therm Anal Calorim. 2008;91:137–40.

    Article  CAS  Google Scholar 

  4. Karamanov A, Avramov I, Arrizza L, Pascova R, Gutzow I. Variation of Avrami parameter during non-isothermal surface crystallization of glass powders with different sizes. J Non Cryst Solids. 2012;358:1486–90.

    Article  CAS  Google Scholar 

  5. Svoboda R, Málek J. Non-isothermal crystallization kinetics of As2Se3 glass studied by DSC. Thermochim Acta. 2014;579:56–63.

    Article  CAS  Google Scholar 

  6. Joseph K, Kutty KVG, Goswami MC, Rao PRV. Viscosity and crystallization mechanism of cesium loaded iron phosphate glasses. Thermochim Acta. 2014;587:42–7.

    Article  CAS  Google Scholar 

  7. Holubová J, Černošek Z, Černošková E, Černá A. Crystallization of supercooled liquid of selenium: the comparison of kinetic analysis of both isothermal and non-isothermal DSC data. Mater Lett. 2006;60:2429–32.

    Article  Google Scholar 

  8. Rodová M, Cihlář A, Knížek K, Nitsch K, Solovieva N. Preparation and properties of Ce-doped Na–Gd phosphate glasses. Radiat Meas. 2004;38:489–92.

    Article  Google Scholar 

  9. Kozmidis-Petrovic A, Šesták J. Forty years of the Hrubý glass-forming coefficient via DTA when comparing other criteria in relation to the glass stability and vitrification ability. J Therm Anal Calorim. 2012;110(2):997–1004.

    Article  CAS  Google Scholar 

  10. Hrubý A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 1972;22:1187–93.

    Article  Google Scholar 

  11. Dohare C, Mehta N. Iso-conversional analysis of glass transition and crystallization in as-synthesis high yield of glassy Se98Cd2 nanorods. Appl Nanosci. 2013;3:271–80.

    Article  CAS  Google Scholar 

  12. Mehta N, Kumar A. A study of thermal crystallization in glassy Se80Te20 and Se80In20 using DSC technique. J Therm Anal Calorim. 2006;83:401–5.

    Article  CAS  Google Scholar 

  13. Kasyap S, Patel AT, Pratap A. Crystallization kinetics of Ti20Zr20Cu60 metallic glass by isoconversional methods using modulated differential scanning calorimetry. J Therm Anal Calorim. 2014;116:1325–36.

    Article  CAS  Google Scholar 

  14. Heydari M, Rahman M, Gupta R. Kinetic study and thermal decomposition behavior of lignite coal. Int J Chem Eng. 2015;2015: 1–9.

    Article  Google Scholar 

  15. Joseph K, Krishnan RV, Kutty KVG, Rao PRV. Crystallisation kinetics of a cesium iron phosphate glass. Thermochim Acta. 2009;494:110–4.

    Article  CAS  Google Scholar 

  16. Šimon P. Isoconversional methods, fundamentals, meaning and application. J Therm Anal Calorim. 2004;76:123–32.

    Article  Google Scholar 

  17. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  18. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reaction using a modified the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  19. Heireche L, Heireche M, Belhadji M. Kinetic study of non-isothermal crystallization in Se90−xZn10Sbx (x = 0, 2, 4, 6) chalcogenide glasses. J Cryst Process Technol. 2014;4(2):111–20.

    Article  CAS  Google Scholar 

  20. Ram IS, Singh K. Study of crystallization process in Se80In10Pb10 by iso-conversional methods. J Cryst Process Technol. 2013;3:49–55.

    Article  Google Scholar 

  21. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1):163–76.

    Article  CAS  Google Scholar 

  22. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  23. Jouini A, Ferid M, Trabelsi-Ayadi M. Study of the solid–liquid equilibria in the LiPO3–Y(PO3)3 binary system. Mater Res Bull. 2003;38:437–43.

    Article  CAS  Google Scholar 

  24. Elabbar AA, El-Oyoun MA, Abu-Sehly AA. Evaluation of the activation energy of crystallization in Se79.1Te20Sb0.9 chalcogenide glass using isoconversional methods. JTUSCI. 2008;1:4–50.

    Google Scholar 

  25. Marques LE, Costa AMC, Crovace MC, Rodrigues ACM, Cabrak AA. Influence of particle size on nonisothermal crystallization in a lithium disilicate glass. J Am Ceram Soc. 2014;98(3):1–7.

    Google Scholar 

  26. Ozturk A. Influence of particle size of glass powder on the crystallisation kinetic parameters of a fluorophosphate glass. Phys Chem Glasses. 2000;41(2):71–4.

    CAS  Google Scholar 

  27. Svoboda R, Málek J. Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta. 2011;526:237–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. M. Kittler for cutting and polishing prepared samples into the bulk glass cylinders and Mrs. M. Rodová for measuring of samples by thermal analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Zemenová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemenová, P., Král, R., Nitsch, K. et al. Characterization and crystallization kinetics of Er-doped Li2O–Y2O3–P2O5 glass studied by non-isothermal DSC analysis. J Therm Anal Calorim 125, 1431–1437 (2016). https://doi.org/10.1007/s10973-016-5730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5730-1

Keywords

Navigation