Skip to main content
Log in

Crystal structures, thermal properties, and luminescent properties of two novel mononuclear lanthanide complexes with 2,4-dichlorobenzoic acid and 2,2′:6′,2″-terpyridine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two novel mononuclear lanthanide complexes, [Ln(2,4-DClBA)3(terpy)(H2O)]·H2O (Ln = Dy(1), Er(2)); 2,4-DClBA: 2,4-dichlorobenzoate; terpy: 2,2′:6′,2″-terpyridine; have been synthesized and characterized by single-crystal and powder X-ray diffraction. The results reveal that complexes 1–2 are isomorphous, and each Ln3+ ion is nine coordinated adopting a distorted monocapped square antiprismatic molecular geometry. Mononuclear complexes 1–2 are stitched together via Cl–π and hydrogen bonding interactions to form the 1D, 2D, 3D supramolecular structures, which the 3D is rarely observed. Thermal decomposition mechanism is determined by TG/DSC-FTIR, and the 3D stacked plots for the FTIR spectra of the evolved gases were recorded. Heat capacities of complexes 1–2 were measured, and the derived thermodynamic functions (H T − H 298.15), (S T − S 298.15) and (G T − G 298.15) of the complexes relative to the standard reference temperature 298.15 K were obtained. The activation energy E values of the first decomposition stage for title complexes were calculated by integral isoconversional nonlinear (NL-INT) and Starink methods. Complex 1 shows the characteristic emission of Dy3+ with strong yellow emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li RF, Liu XF, Zhang T, Wang LY, Ma LF, Feng X. Two unique lanthanide–organic frameworks based on biphenyl-2,3,3′,5′-tetracarboxylic acid: syntheses, crystal structures and luminescence properties. Polyhedron. 2015;99:238–43.

    Article  CAS  Google Scholar 

  2. Zhang S, Duan E, Han Z, Li L, Cheng P. Lanthanide coordination polymers with 4,4′-azobenzoic acid: enhanced stability and magnetocaloric effect by removing guest solvents. Inorg Chem. 2015;54:6498–503.

    Article  CAS  Google Scholar 

  3. Maity M, Majee MC, Kundu S, Samanta SK, Sanudo EC, Ghosh S, Chaudhury M. Pentanuclear 3d–4f heterometal complexes of M(II)3Ln(III)2 (M = Ni, Cu, Zn and Ln = Nd, Gd, Tb) combinations: syntheses, structures, magnetism, and photoluminescence properties. Inorg Chem. 2015;54:9715–26.

    Article  CAS  Google Scholar 

  4. Ay B, Karaca S, Yildiz E, Lopez V, Nanao MH, Zubieta J. In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln = Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands. J Solid State Chem. 2016;233:415–21.

    Article  CAS  Google Scholar 

  5. Sun X, Jin X, Pan W, Wang J. Syntheses of new rare earth complexes with carboxymethylated polysaccharides and evaluation of their in vitro antifungal activities. Carbohydr Polym. 2014;113:194–9.

    Article  CAS  Google Scholar 

  6. Zong GC, Huo JX, Ren N, Zhang JJ, Qi XX, Gao J, Geng LN, Wang SP, Shi SK. Preparation, characterization and properties of four new trivalent lanthanide complexes constructed using 2-bromine-5-methoxybenzoic acid and 1,10-phenanthroline. Dalton Trans. 2015;44:14877–86.

    Article  CAS  Google Scholar 

  7. Gu JZ, Wu J, Lv DY, Tang Y, Zhu K, Wu J. Lanthanide coordination polymers based on 5-(2′-carboxylphenyl) nicotinate: syntheses, structure diversity, dehydration/hydration, luminescence and magnetic properties. Dalton Trans. 2013;42:4822–30.

    Article  CAS  Google Scholar 

  8. Yang L, Liu L, Wu L, Xu Z, Wang L. Isomorphous and isostructural lanthanide coordination polymers based on 2-(4-chlorobenzoyl)benzoic acid: synthesis, structure, characterization, and luminescent properties. Dyes Pigments. 2014;111:176–84.

    Article  CAS  Google Scholar 

  9. Oliveira CK, de Souza VP, da Luz LL, de Menezes Vicenti JR, Burrow RA, Severino A, Longo RL, Malvestiti I. Synthesis, crystal structure and luminescent properties of lanthanide extended structure with asymmetrical dinuclear units based on 2-(methylthio)benzoic acid. J Lumin. 2016;170:528–37.

    Article  CAS  Google Scholar 

  10. Du M, Wang X, Chen M, Li CP, Tian JY, Wang ZW, Liu CS. Ligand symmetry modulation for designing a mesoporous metal-organic framework: dual reactivity to transition and lanthanide metals for enhanced functionalization. Chemistry. 2015;21:9713–20.

    Article  CAS  Google Scholar 

  11. Xu C, Kirillov AM, Shu Y, Liu Y, Guo L, Yang L, Dou W, Liu W, Chen C, Huang X, Zhang J, Liu W. Photoluminescence enhancement induced by a halide anion encapsulation in a series of novel lanthanide(iii) coordination polymers. CrystEngComm. 2016;18:1190–9.

    Article  CAS  Google Scholar 

  12. Ay B, Yildiz E, Kani İ. Novel heteroleptic lanthanide organic frameworks containing pyridine-2,5-dicarboxylic acid and in situ generated piperazine-2,5-dicarboxylic acid from piperazine: hydrothermal synthesis and luminescent properties. J Solid State Chem. 2016;233:44–51.

    Article  CAS  Google Scholar 

  13. Marques LF, Cuin A, de Carvalho GSG, dos Santos MV, Ribeiro SJL, Machado FC. Energy transfer process in highly photoluminescent binuclear hydrocinnamate of europium, terbium and gadolinium containing 1,10-phenanthroline as ancillary ligand. Inorg Chim Acta. 2016;441:67–77.

    Article  CAS  Google Scholar 

  14. Marques LF, Cantaruti AAB, Correa CC, Lahoud MG, da Silva RR, Ribeiro SJL, Machado FC. First crystal structures of lanthanide-hydrocinnamate complexes: hydrothermal synthesis and photophysical studies. J Photochem Photobiol A Chem. 2013;252:69–76.

    Article  CAS  Google Scholar 

  15. Carter KP, Pope SJA, Cahill CL. A series of Ln-p-chlorobenzoic acid–terpyridine complexes: lanthanide contraction effects, supramolecular interactions and luminescent behavior. CrystEngComm. 2014;16:1873.

    Article  CAS  Google Scholar 

  16. Zhang YY, Ren N, Xu SL, Zhang JJ, Zhang DH. A series of binuclear lanthanide(III) complexes: crystallography, antimicrobial activity and thermochemistry properties studies. J Mol Strut. 2015;1081:413–25.

    Article  CAS  Google Scholar 

  17. Zhang YY, Ren SH, Ren N, Zhang JJ, Geng LN, Wang SP, Shi SK. Crystal structures, spectroscopic, and thermal properties of dysprosium(III) and europium(III) complexes with 3-chloro-4-methoxybenzoic and 1,10-phenanthroline. J Therm Anal Calorim. 2015;119:1803–10.

    Article  CAS  Google Scholar 

  18. Qi XX, Wu JC, Ren N, Zhao CL, Zhang JJ, Zong GC, Gao J. Novel lanthanide complexes constructed from 3, 4-dimethoxybenzoic acid: crystal structures, spectrum and thermochemical properties. Thermochim Acta. 2015;615:1–7.

    Article  CAS  Google Scholar 

  19. Wang MH, Tan ZC, Sun XH, Zhang HT, Liu BP, Sun LX, Zhang T. Determination of heat capacities and thermodynamic properties of 2-(chloromethylthio)benzothiazole by an adiabatic calorimeter. Chem Eng Data. 2005;50:270–3.

    Article  CAS  Google Scholar 

  20. Liu JY, Ren N, Zhang JJ, He SM, Wang SP. Crystal structures, thermal properties, and biological activities of a series of lanthanide compounds with 2,4-dichlorobenzoic acid and 1,10-phenanthroline. Ind Eng Chem Res. 2013;52:6156–63.

    Article  CAS  Google Scholar 

  21. Huo JX, Wang Y, Zhang DH, Ren N, Zhang JJ. Syntheses, characterization, luminescence, and thermal decomposition mechanism of four lanthanide complexes with 4-ethylbenzoic acid and terpyridine. J Therm Anal Calorim. 2016;124:1575–85.

    Article  CAS  Google Scholar 

  22. Carter KP, Zulato CHF, Cahill CL. Exploring supramolecular assembly and luminescent behavior in a series of RE-p-chlorobenzoic acid-1,10-phenanthroline complexes. CrystEngComm. 2014;16:10189–202.

    Article  CAS  Google Scholar 

  23. Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Efficient catalytic addition of aromatic carbon–hydrogen bonds to olefins. Nature. 1993;366:529–31.

    Article  CAS  Google Scholar 

  24. Zhou JM, Shi W, Xu N, Cheng P. Highly selective luminescent sensing of fluoride and organic small-molecule pollutants based on novel lanthanide metal-organic frameworks. Inorg Chem. 2013;52:8082–90.

    Article  CAS  Google Scholar 

  25. Onoda M, Yamamoto A, Takayama-Muromachi E, Takekawa S. Assignment of the powder X-ray diffraction pattern of superconductor Bi2(Sr,Ca)3–xCu2Oy. Jpn J Appl Phys. 1988;27:L833–6.

    Article  CAS  Google Scholar 

  26. Ye HM, Ren N, Zhang JJ, Sun SJ, Wang JF. Crystal structures, luminescent and thermal properties of a new series of lanthanide complexes with 4-ethylbenzoic acid. New J Chem. 2010;34:533.

    Article  CAS  Google Scholar 

  27. Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Mode. 1996;36:42–5.

    CAS  Google Scholar 

  28. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Therm Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  29. Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19:45–60.

    Article  CAS  Google Scholar 

  30. Qi XX, Ren N, Zhang DH, Zhang JJ. Synthesis, spectroscopic, thermochemical properties of lanthanide complexes with 3,4-diethoxybenzoic acid and 1,10-phenanthroline. Chem Res Chin Univ. 2015;31:1039–45.

    Article  CAS  Google Scholar 

  31. Jin CW, Wang Y, Xu SL, Zhang JJ. Synthesis, crystal structures and thermochemical properties of ternary rare earth complexes based on 3,4-diethoxybenzoic acid and 2,2′-bipyridine. Acta Phys Chim Sin. 2016. doi:10.3866/PKU.WHXB201605263.

    Google Scholar 

Download references

Acknowledgements

The research work was supported by the National Natura Science Foundation of China (No. 21473049) and the Natural Science Foundation of Hebei Province (No. B2016205207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, QQ., Ren, N. et al. Crystal structures, thermal properties, and luminescent properties of two novel mononuclear lanthanide complexes with 2,4-dichlorobenzoic acid and 2,2′:6′,2″-terpyridine. J Therm Anal Calorim 126, 1703–1712 (2016). https://doi.org/10.1007/s10973-016-5728-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5728-8

Keywords

Navigation