Skip to main content
Log in

Use of phyllosilicate clay mineral to increase solubility olanzapine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phyllosilicates have interesting properties, such as high capacity of ion exchange, adsorption, physicochemical stability and low/null toxicity, and thus, they are a promising material in pharmaceutical studies. Olanzapine (OLZ), used in the treatment of schizophrenia, is a drug of high cost and low water solubility, which are an obstacle to its use. In this work, an oral delivery system was developed using phyllosilicate (PHY-NT) and OLZ together to increase its solubility. PHY-NT was synthesized by sol–gel method, and then, OLZ was adsorbed creating the system called PHY-NT:OLZ. Thermal analysis was performed to investigate possible interactions between olanzapine and phyllosilicate. a sharp endothermic peak at 468 K was observed, which corresponds to the melting process of OLZ. When OLZ was added to PHY-NT, this peak was absent, suggesting an efficient denaturation of its crystal lattice. FTIR spectroscopy and X-ray powder diffraction were performed as complementary techniques to adequately support thermal analysis results. The created system caused a considerable increase in OLZ dissolution efficiency, and more than 80 % of the drug was released from PHY-NT:OLZ after 20 min. Drug release was evaluated in vitro and showed a Fickian diffusion-based pattern. Thus, results suggest that PHY-NT can be used as an alternative to increase drug dissolution rate of OLZ, expanding applications of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carlos A, Coelho V, Santos DS, De Engenharia D, Politécnica E, Paulo UDS, et al. Revisão. Quími Nova. 2007;30:1282–94.

    Article  Google Scholar 

  2. Alencar JM, Oliveira FJVE, Airoldi C, Silva Filho EC . Organophilic nickel phyllosilicate for reactive blue dye removal. Chem Eng J. 2014; 236:332–40. http://www.sciencedirect.com/science/article/pii/S1385894713012953. Cited 16 Mar 2015.

  3. Carretero MI. Clay minerals and their beneficial effects upon human health. A review. Appl Clay Sci. 2002;21:155–63.

    Article  CAS  Google Scholar 

  4. Delhoyo C. Layered double hydroxides and human health: An overview. Appl Clay Sci. 2007;36:103–21. http://linkinghub.elsevier.com/retrieve/pii/S0169131706001438.

  5. De Paiva LB, Morales AR, Díaz FRV. Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. Cerâmica. 2008;54:213–26.

    Article  Google Scholar 

  6. Tireli AA, Marcos FCF, Oliveira LF, Guimarães IDR, Guerreiro MC, Silva JP. Influence of magnetic field on the adsorption of organic compound by clays modified with iron. Appl Clay Sci. 2014;97–98:1–7. http://linkinghub.elsevier.com/retrieve/pii/S0169131714001665.

  7. Cunha VRR, Ana AM, Constantino VRL, Tronto J, Valim JB. Hidróxidos duplos lamelares: nanopartículas inorgânicas para armazenamento e liberação de espécies de interesse biológico e terapêutico. Quim Nova. 2010;33:159–71.

    Article  CAS  Google Scholar 

  8. Salcedo I, Aguzzi C, Sandri G, Bonferoni MC, Mori M, Cerezo P, et al. In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: a new drug delivery. Appl Clay Sci. 2012;55:131–7. doi:10.1016/j.clay.2011.11.006.

    Article  CAS  Google Scholar 

  9. Zhuang H, Zheng JP, Gao H, De Yao K. In vitro biodegradation and biocompatibility of gelatin/montmorillonite- chitosan intercalated nanocomposite. J Mater Sci Mater Med. 2007;18:951–7.

    Article  CAS  Google Scholar 

  10. Paluszkiewicz C, Wesełucha-Birczyńska a., Stodolak-Zych E, Hasik M. 2D IR correlation analysis of chitosan-MMT nanocomposite system. Vib Spectrosc. 2012;60:185–8. http://linkinghub.elsevier.com/retrieve/pii/S0924203111001822.

  11. Yang L, Choi S-K, Shin H-J, Han H-K. 3-Aminopropyl functionalized magnesium phyllosilicate as an organoclay based drug carrier for improving the bioavailability of flurbiprofen. Int J Nanomed. 2013;8:4147–55. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3817028&tool=pmcentrez&rendertype=abstract.

  12. Tantawy MA, Hassan NY, Elragehy NA, Abdelkawy M. Simultaneous determination of olanzapine and fluoxetine hydrochloride in capsules by spectrophotometry, TLC-spectrodensitometry and HPLC. J Adv Res Cairo Univ; 2013;4:173–80. http://www.ncbi.nlm.nih.gov/pubmed/25685415.

  13. Rajendraprasad N, Basavaiah K. Determination of olanzapine by spectrophotometry using permanganate. Braz J Pharm Sci. 2009;45:539–50.

    Article  CAS  Google Scholar 

  14. Regulska E, Karpińska J. Photocatalytic degradation of olanzapine in aqueous and river waters suspension of titanium dioxide. Appl Catal B Environ. 2012;117–118:96–104. http://www.sciencedirect.com/science/article/pii/S0926337312000045.

  15. De Freitas MR, Rolim LA, Soares MFDLR, Rolim-Neto PJ, De Albuquerque MM, Soares-Sobrinho JL. Inclusion complex of methyl-β-cyclodextrin and olanzapine as potential drug delivery system for schizophrenia. Carbohydr Poly. Elsevier Ltd. 2012;89:1095–100. http://linkinghub.elsevier.com/retrieve/pii/S0144861712003001.

  16. Wawrzycka-Gorczyca I, Borowski P, Osypiuk-Tomasik J, Mazur L, Koziol AE. Crystal structure of olanzapine and its solvates. Part 3. Two and three-component solvates with water, ethanol, butan-2-ol and dichloromethane. J Mol Struct. 2007;830:188–97. http://linkinghub.elsevier.com/retrieve/pii/S0022286006006442.

  17. Lima ÁAN, Soares-Sobrinho JL, Silva JL, Corrêa-Júnior RAC, Lyra MAM, Santos FLA, Oliveira BG, Hernandes MZ, Rolim LA, Rolim-Neto PJ. The use of solid dispersion systems in hydrophilic carriers to increase benznidazole solubility. Pharm Technol. 2011;100:2443–51.

    CAS  Google Scholar 

  18. Monks K, Molnár I, Rieger HJ, Bogáti B, Szabó E. Quality by design: multidimensional exploration of the design space in high performance liquid chromatography method development for better robustness before validation. J Chromatogr A. 2012;1232:218–30. doi:10.1016/j.chroma.2011.12.041.

    Article  CAS  Google Scholar 

  19. Do Rêgo JF, De Moura JI, Moita GC. Olanzapine, spectrophotometric formulations, determinationpharmaceutical spectrophotometric method developmentvalidation. Quim Nova. 2010;33:471–7.

    Article  Google Scholar 

  20. Santana NCTCGDSMAMTJLSSLBLDP de. Assay and physicochemical characterization of the antiparasitic albendazole. Brazil J Pharm Sci. 2012;48:281–90.

    Article  Google Scholar 

  21. Soares-Sobrinho JL, de La Roca Soares MF, Rolim-Neto PJ, Torres-Labandeira JJ. Physicochemical study of solid-state benznidazole–cyclodextrin complexes. J Therm Anal Calorim. 2011;106:319–25. doi:10.1007/s10973-010-1186-x.

    Article  CAS  Google Scholar 

  22. Soares-Sobrinho JL, Santos FLA, Lyra MAM, Alves LDS, Rolim LA, Lima AAN, et al. Benznidazole drug delivery by binary and multicomponent inclusion complexes using cyclodextrins and polymers. Carbohydr Polym. Elsevier Ltd. 2012;89:323–30. http://www.sciencedirect.com/science/article/pii/S0144861712001695.

  23. Rigobello C, Gasparetto AV, Diniz A, Rabito MF, Fregonezi Nery MM. Avaliação da qualidade e perfil de dissolução de comprimidos de cloridrato de propranolol. Acta Sci Health Sci. 2013;35:85–90.

    Article  CAS  Google Scholar 

  24. The United States Pharmacopeia. 35th ed. Rockville: United States Pharmacopeia Convention; 2012.

  25. de Mohac LM, de Fátima Pina M, Raimi-Abraham BT. Solid microcrystalline dispersion films as a new strategy to improve the dissolution rate of poorly water soluble drugs: a case study using olanzapine. Int J Pharm. Elsevier B.V. 2016;508:42–50. http://linkinghub.elsevier.com/retrieve/pii/S0378517316303787.

  26. Rudrangi SRS, Trivedi V, Mitchell JC, Wicks SR, Alexander BD. Preparation of olanzapine and methyl-β-cyclodextrin complexes using a single-step, organic solvent-free supercritical fluid process: an approach to enhance the solubility and dissolution properties. Int J Pharm. 2015;494:408–16. doi:10.1016/j.ijpharm.2015.08.062.

    Article  CAS  Google Scholar 

  27. Mahle F, Goelzer F, Adriano J, Felippe M, Vier N, Carli RBG, et al. Avaliação do perfil de dissolução de comprimidos de hidroclorotiazida comercializados no Brasil. Revista de Ciencias Farmaceuticas Basica e Aplicada. 2007;28:265–71.

    CAS  Google Scholar 

  28. Da Costa PJC. Avaliação in vitro da lioequivalência de formulações farmacêuticas. Revista Brasileira de Ciências Farmacêuticas. 2002;38:141–53.

    Article  Google Scholar 

  29. Xu X, Al-Ghabeish M, Krishnaiah YSR, Rahman Z, Khan MA. Kinetics of drug release from ointments: Role of transient-boundary layer. Int J Pharm. 2015;494:31–9. doi:10.1016/j.ijpharm.2015.07.077.

    Article  CAS  Google Scholar 

  30. Melo MA, Oliveira FJVE, Airoldi C. Novel talc-like nickel phyllosilicates functionalized with ethanolamine and diethanolamine. Appl Clay Sci. 2008;42:130–6. doi:10.1016/j.clay.2008.01.017.

    Article  CAS  Google Scholar 

  31. Roosz C, Grangeon S, Blanc P, Montouillout V, Lothenbach B, Henocq P, et al. Crystal structure of magnesium silicate hydrates (M-S-H): the relation with 2:1 Mg–Si phyllosilicates. Cem Concr Res. 2015;73:228–37. doi:10.1016/j.cemconres.2015.03.014.

    Article  CAS  Google Scholar 

  32. Sales JAA, Petrucelli GC, Oliveira FJVE, Airoldi C. Some features associated with organosilane groups grafted by the sol-gel process onto synthetic talc-like phyllosilicate. J Colloid Interface Sci. 2006;297:95–103.

    Article  CAS  Google Scholar 

  33. Barbosa CML, Sansiviero MTC. Decomposição Térmica de complexos de Zn e cd com isomaleonitriladitiolato (imnt). Quim Nova. 2005;28:761–5.

    Article  CAS  Google Scholar 

  34. Ayala AP, Siesler HW, Boese R, Hoffmann GG, Polla GI, Vega DR. Solid state characterization of olanzapine polymorphs using vibrational spectroscopy. Int J Pharm. 2006;326:69–79. http://linkinghub.elsevier.com/retrieve/pii/S0378517306005540.

  35. Lopes WA, Fascio M. Esquema para interpretação de espectros de substâncias orgânicas na região do infravermelho. Quim Nova. 2004;27:670–3.

    Article  CAS  Google Scholar 

  36. Silverstein RM, Webster FX, Kiemle D. Spectrometric indentification of organic compounds. 7th ed. New York: Wiley; 2005.

    Google Scholar 

  37. Reshetov PV, Fedotova OV, Kriven’ko AP, Kharchenko VG. Hydroamination of pyrylium salts. Chem Heterocycl Compd. 1990;513–6.

    Google Scholar 

  38. Pezzini BR, Silva MAS, Ferraz HG. Formas farmacêuticas sólidas orais de liberação prolongada: sistemas monolíticos e multiparticulados. Rev Brasil de Ciências Farmacêuticas. 2007;43:12.

    Google Scholar 

Download references

Acknowledgements

The authors thank Capes, Facepe and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Soares-Sobrinho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, M.L.C.M., Lyra, M.A.M., Oliveira, F.J.V.E. et al. Use of phyllosilicate clay mineral to increase solubility olanzapine. J Therm Anal Calorim 127, 1743–1750 (2017). https://doi.org/10.1007/s10973-016-5719-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5719-9

Keywords

Navigation