Skip to main content
Log in

Kinetics analysis of thermal decomposition of ammonium dinitramide (ADN)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kinetics analyses were performed on the thermal decomposition of ammonium dinitramide (ADN) using thermogravimetry-differential thermal analysis–mass spectrometry–infrared spectroscopy (TG-DTA–MS–IR). The main evolved gases were determined to be NH3, H2O, N2, NO, N2O, and NO2. The apparent activation energies of the exothermic, mass-change and gas-evolving reactions were analyzed on the basis of Friedman methods. The apparent activation energy of evolving N2 has the same value as that of evolving H2O since they occur by the same mechanism. A Friedman plot obtained from the DTA data has a curve similar to those obtained from N2 and H2O. The reaction that generated N2 and H2O plays an important role in the exothermic reaction in the decomposition of ADN. The activation energy for the N2O evolution reaction has a range of approximately 120–152 kJ mol−1 with reaction progress values between 0.1 and 0.9. Quantum chemistry calculations revealed that the total energy barrier of dinitramic acid unimolecular decomposition and ammonium-dinitramic ions collision-induced decomposition is 149.9–156.0 and 160.6 kJ mol−1, respectively. These values are reasonable compared with the experimental value of 152 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Larsson A, Wingborg N. Green propellants based on ammonium dinitramide (ADN). In: Hall J editor. Advances in spacecraft technologies. InTech; 2011. pp. 139–156.

  2. Nagamachi MY, Oliveira JI, Kawamoto AM, Dutra RCL. ADN: The new oxidizer aroudthe corner for an environmentally friendly smokeless propellant. J Aerosp Technol Manag. 2009;1:153–60.

    Article  CAS  Google Scholar 

  3. Östmark H, Bemm U, Langlet A, Sanden R, Wingborg N. The properties of ammonium dinitramide (ADN): part 1, basic properties and spectroscopic data. J Energ Mater. 2000;18:123–8.

    Article  Google Scholar 

  4. Thakre P, Duan Y, Yang V. Modeling of ammonium dinitramide (ADN) monopropellant combustion with coupled condensed and gas phase kinetics. Combust Flame. 2014;161:347–62.

    Article  CAS  Google Scholar 

  5. Sinditskii VP, Egorshev VY, Levshenkov AI, Serushkin VV. Ammonium nitrate: combustion mechanism and the role of additives. Propellants Explos Pyrotech. 2005;30:269–80.

    Article  CAS  Google Scholar 

  6. Sinditskii VP, Egorshev VY, Serushkin VV, Filatov SA. Combustion of energetic materials controlled by condensed-phase reactions. Combust Explos Shock. 2012;48:81–99.

    Article  Google Scholar 

  7. Ermolin NE. Modeling of pyrolysis of ammonium dinitramide sublimation products under low-pressure conditions. Combust Explos Shock. 2004;40:92–100.

    Article  Google Scholar 

  8. Park J, Chakraborty D, Lin MC. Thermal decomposition of gaseous ammonium dinitramide at low pressure: kinetic modeling of product formation with ab initio Mo/cVRRKM calculations. Twenty-seventh symposium (international) on combustion/The Combustion Institute. 1998. pp. 2351–2357.

  9. Raman S, Ashcraft RW, Vial M, Klasky ML. Oxidation of hydroxylamine by nitrous and nitric acids. Model development from first principle SCRF calculation. J Phys Chem A. 2005;109:8526–36.

    Article  CAS  Google Scholar 

  10. Ashcraft RW, Raman S, Green WH. Ab initio aqueous thermochemistry: application to the oxidation of hydroxylamine in nitric acid solution. J Phys Chem B. 2007;111:11968–83.

    Article  CAS  Google Scholar 

  11. Ashcraft RW, Raman S, Green WH. Predicted reaction rates of HxNyOz intermediates in the oxidation of hydroxylamine by aqeous nitric acid. J Phys Chem A. 2008;112:7577–93.

    Article  CAS  Google Scholar 

  12. Kumbhakarna NR, Shah KJ, Chowdhury A, Thynell ST. Identification of liquid-phase decomposition species and reactions for guanidinium azotetrazolate. Thermochim Acta. 2014;590:51–65.

    Article  CAS  Google Scholar 

  13. Kumbhakarna N, Thynell ST. Development of a reaction mechanism for liquid-phase decomposition of guanidinium 5-amino tetrazolate. Thermochim Acta. 2014;582:25–34.

    Article  CAS  Google Scholar 

  14. Tompa AS. Thermal analysis of ammonium dinitramide (ADN). Thermochim Acta. 1999;357–358:177–93.

    Google Scholar 

  15. Oxley JC, Smith JL, Zhang W. Thermal decomposition studies on ammonium dinitramide (ADN) and 15N and 2H isotopomers. J Phys Chem. 1997;101:5646–52.

    Article  CAS  Google Scholar 

  16. Vyazovkin S, Wight C. Ammonium dinitramide: kinetics and mechanism of thermal decomposition. J Phys Chem. 1997;101:5653–8.

    Article  CAS  Google Scholar 

  17. Matsunaga H, Habu H, Miyake A. Thermal behavior of new oxidizer ammonium dinitramide. J Therm Anal Calorim. 2013;111:1183–8.

    Article  CAS  Google Scholar 

  18. Yang R, Thakre P, Yang V. Thermal decomposition and combustion of ammonium dinitramide (review). Combust Explos Shock. 2005;41:657–79.

    Article  Google Scholar 

  19. Langlet A, Wingborg N, Östmart H. ADN: a new and promising oxidizer for composite rocket propellants. In: Kuo K editor. Challenges in propellants and combustion: 100 years after Nobel. Begell House; 1997. pp.616–626.

  20. Matsunaga H, Habu H, Miyake A. Thermal decomposition of the high-performance oxidizer ammonium dinitramide under pressure. J Therm Anal Calorim. 2014;116:1227–32.

    Article  CAS  Google Scholar 

  21. Matsunaga H, Izato Y, Habu H, Miyake A. Thermal decomposition characteristics of mixtures of ammonium dinitramide and copper(II) oxide. J Therm Anal Calorim. 2015;121:319–26.

    Article  CAS  Google Scholar 

  22. Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615–20.

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford CT; 2010.

  24. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys. 1999;110:2822–7.

    Article  CAS  Google Scholar 

  25. Matsunaga H, Habu H, Miyake A. Influences of aging on thermal decomposition mechanism of high performance oxidizer ammonium dinitramide. J Therm Anal Calorim. 2013;113:1387–94.

    Article  CAS  Google Scholar 

  26. Linstrom PJ, Mallard WG. NIST Chemistry WebBook. NIST standard reference database number 69. Eds. National Institute of Standards and Technology. http://webbook.nist.gov. Accessed 30 May 30 2016.

  27. Vyazovkin S, Wight C. Thermal decomposition of ammonium dinitramide at moderate and high temperatures. J Phys Chem. 1997;101:7217–21.

    Article  CAS  Google Scholar 

  28. Russell TP, Stern AG, Koppes WM, Bedford CD. Thermal decomposition and stabilization of ammonium dinitramide. Proc. 29th JANNAF combustion subcommittee meeting. CPIA Publ. 1992;593:339–345.

  29. Korobeinichev OP, Kuibida LV, Paletsky AA, Shmakov AG. Molecular-beam mass-spectrometry to ammonium dinitramide combustion chemistry studies. J Propuls Power. 1998;14:991–1000.

    Article  CAS  Google Scholar 

  30. Rossi MJ, Bottaro JC, McMillen DF. The thermal decomposition of the new energetic material ammonium dinitramide [NH4N(NO2)2] in relation to nitramide (NH2NO2) and NH4NO3. Int J Chem Kinet. 1993;25:549–70.

    Article  CAS  Google Scholar 

  31. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1963;6:183–95.

    Article  Google Scholar 

  32. Ozawa T. Applicability of Friedman plot. J Therm Anal. 1986;31:547–51.

    Article  CAS  Google Scholar 

  33. Lord FM, Kittelberger JS. On the determination of activation energies in thermal desorption experiments. Surf Sci. 1974;43:173–82.

    Article  CAS  Google Scholar 

  34. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  35. Kazakov AI, Rubtsov YI, Manelis GB. Kinetics of the thermal decomposition of dinitramide 2. Kinetics of the reactions of dinitramide with decomposition products and other components of a solution. Russ Chem Bull. 1998;47:39–45.

    Article  CAS  Google Scholar 

  36. Rosser WA, Inami SH, Wise H. The kinetics of decomposition of liquid ammonium nitrate. J Phys Chem. 1963;67:1753–7.

    Article  CAS  Google Scholar 

  37. Izato Y, Miyake A. A condensed phase decomposition mechanism for ammonium nitrate. Sci Technol Energ Mater. 2015;76:98–103.

    Google Scholar 

  38. Oxley JC, Smith JL, Wang W. Compatibility of ammonium nitrate with monomolecular explosives. Part II Nitroarenes. J Phys Chem. 1994;98:3901–7.

    Article  CAS  Google Scholar 

  39. Chaturvedi S, Dave PN. Review on thermal decomposition of ammonium nitrate. J Energ Mater. 2012;31:1–26.

    Article  Google Scholar 

  40. Keenan AG, Notz K, Franco NB. Synergistic catalysis of ammonium nitrate decomposition 1. J Am Chem Soc. 1969;91:3168–71.

    Article  CAS  Google Scholar 

  41. Izato Y, Miyake A. Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixture. J Therm Anal Calorim. 2015;121:287–94.

    Article  CAS  Google Scholar 

  42. Krautle KJ, Atwood AJ. The reaction of ammonium dinitramide under thermal load. Proc. 29th JANNAF Combust. Subcommittee Meeting. CPIA Publ. 1992. pp. 593:157.

  43. Rahm M, Brinck T. Dinitraminic acid (HDN) isomerization and self-decomposition revisited. Chem Phys. 2008;348:53–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsumi Miyake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izato, Yi., Koshi, M., Miyake, A. et al. Kinetics analysis of thermal decomposition of ammonium dinitramide (ADN). J Therm Anal Calorim 127, 255–264 (2017). https://doi.org/10.1007/s10973-016-5703-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5703-4

Keywords

Navigation