Skip to main content
Log in

On the role of TiO2 nanoparticles on thermal behavior of flexible polyurethane foam sandwich panels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of flexible polyurethane foam (FPUF) and monolithic polyurethane (PU) sandwich panels reinforced with different contents of TiO2 nanoparticles (0, 0.5 and 1 mass%) have been successfully prepared by compression molding process at room temperature. The influence of TiO2 nanoparticles on the thermal properties of PU matrix has been investigated by thermogravimetric and dynamic mechanical thermal analysis (DMTA). The morphology of porous structure of FPUF sandwich panels has been characterized by scanning electron microscopy. The presence of TiO2 nanoparticles as reinforcement has improved the thermal properties of the FPUF and PU sandwich panel samples. It has been observed that FPUF and PU sandwich panel reinforced with 1 mass% of TiO2 nanoparticles possessed the highest enhancement in thermal properties in all accomplished thermal tests. The DMTA results for the FPUF and PU sandwich panel reinforced with 1 mass% of TiO2 nanoparticles indicated that the storage modulus and loss modulus have increased about 1.22 and 1.25 times, 1.5 and 1.55 times, respectively, compared to pure samples. Furthermore, the glass transition (T g) obtained from the damping factor (tanδ) curves has increased 2 and 1 °C for FPUF and PU sandwich panels, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lin B, Yang L, Dai H, Hou Q, Zhang L. Thermal analysis of soybean oil based polyols. J Therm Anal Calorim. 2009;95:977–83.

    Article  CAS  Google Scholar 

  2. Ni BL, Yang LT, Wang CS, Wang LY, Finlow DE. Synthesis and thermal properties of soybean oil-based waterborne polyurethane coatings. J Therm Anal Calorim. 2010;100:239–46.

    Article  CAS  Google Scholar 

  3. Traian Z, Krzysztof P. Stabilization effects of POSS nanoparticles on gamma-irradiated polyurethane. J Therm Anal Calorim. 2016;124:767–74.

    Article  Google Scholar 

  4. Magdalena R, Anna K. Aliphatic polycarbonate-based thermoplastic polyurethane elastomers containing diphenyl sulfide units. J Thermal Anal Calorim. 2016. doi:10.1007/s10973-016-5420-z.

  5. Kristof B, Kinga M, Bela PJ, Bela P. Thermal analysis of the structure of segmented polyurethane elastomers relation to mechanical properties. J Therm Anal Calorim. 2009;98:825–32.

    Article  Google Scholar 

  6. Beltrán AA, Boyacá LA. Production of rigid polyurethane foams from soy-based polyols. Latin Am Appl Res. 2011;41:75–80.

    Google Scholar 

  7. Rojek P, Prociak A. Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams. J Appl Polym Sci. 2012;125(4):2936–45.

    Article  CAS  Google Scholar 

  8. Paulino M, Teixeira-Dias F. On the use of polyurethane foam paddings to improve passive safety in crashworthiness applications. In: Zafar F, Sharmin E, editors. Polyurethanes. In Tech; 2012. p. 337–54. doi:10.5772/47996.

  9. Kulesza K, Pielichowski K, Kowalski Z. Thermal characteristics of novel nah2po4/nahso4 flameretardant system for polyurethane foams. J Therm Anal Calorim. 2006;86:475–8.

    Article  CAS  Google Scholar 

  10. Stephen M. Thermal and flammability study of polystyrene composites containing magnesium–aluminum layered double hydroxide (MgAl–C16 LDH), and an organophosphate. J Therm Anal Calorim. 2015;120:1435–43.

    Article  Google Scholar 

  11. Tuwair H, Hopkins M, Volz J, ElGawady M, Mohamed M, Chandrashekhara K, Birman V. Evaluation of sandwich panels with various polyurethane foam-cores and ribs. Compos B. 2015;79:262–76.

    Article  CAS  Google Scholar 

  12. Pielichowski K, Słotwińska D, Dziwiński E. Segmented MDI/HMDI based polyurethanes with lowered flammability. Appl Polym Sci. 2004;91(5):3214–24.

    Article  Google Scholar 

  13. Jarfelt U, Ramnä O. Thermal conductivity of polyurethane foam-best performance. In: 10th International symposium on district heating and cooling. Chalmers University of Technology. Sweden: Göteborg; 2006. p. 1–11.

  14. Weijing L, Chengshuang W, Bin Q, Yifan S, Yuge Z, Hongfeng X, Rongshi C. Carbon nanofibers reinforced soy polyol-based polyurethane nanocomposites Thermal and mechanical characterization. J Therm Anal Calorim. 2016;123:2459–68.

    Article  Google Scholar 

  15. Su S, Jiang DD, Wilkie CA. Methacrylate modified clays and their polystyrene and poly(methyl methacrylate)nanocomposites. Polym Adv Technol. 2004;15:225–31.

    Article  CAS  Google Scholar 

  16. Gersappe D. Molecular mechanisms of failure in polymer nanocomposites. Phys Rev Lett. 2002;89(5):058301-1-4.

  17. Vollenberg PHT, Heikens D. Particle size dependence of the young’s modulus of filled polymers: 1 preliminary experiments. Polymer. 1982;30:1656–62.

    Article  Google Scholar 

  18. Chan CM, Wu J, Li JX, Cheung YK. Polypropylene/calcium carbonate nanocomposites. Polymer. 2002;43:2981–92.

    Article  CAS  Google Scholar 

  19. Park JH, Jana SC. The relationship between nano- and micro-structures and mechanical properties in PMMA-epoxy-nanoclay composites. Polymer. 2003;44:2091–100.

    Article  CAS  Google Scholar 

  20. Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J. Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer. 2001;42:8759–68.

    Article  CAS  Google Scholar 

  21. Xia Y, Lu Y. One-step fabrication and further modification of poly (Acrylonitrile-co-vinyl acetate) Microsphere. J Polym Res. 2001;18:1645–51.

    Article  Google Scholar 

  22. Regan BO, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737–40.

    Article  Google Scholar 

  23. Chalal S, Haddadine N, Bouslah N, Benaboura A. Preparation of poly(acrylic acid)/silver nanocomposite by simultaneous polymerization—reduction approach for antimicrobial application. J Polym Res. 2012;19:24.

    Article  Google Scholar 

  24. Vollenberg PHT, Heikens D. The mechanical properties of chalk-filled polypropylene: a preliminary investigation; 1990. p. 3089–95.

  25. Kovacevic V, Leskovac M, Lucic Blagojevic S. Morphology and failure in nanocomposites. Part II: surface investigation. J Adhes Sci Technol. 2012;16(14):1915–29.

    Article  Google Scholar 

  26. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties, and uses of a new class of materials. Mater Sci Eng. 2000;28:1–63.

    Article  Google Scholar 

  27. Petrovic ZS, Javni I, Wasson A, Banhegyi G. Structure and properties of polyurethane-silica nanocomposites. J Appl Polym Sci. 2000;76:133–51.

    Article  CAS  Google Scholar 

  28. Saha MC, Kabir MdE, Jeelani S. Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Mater Sci Eng A. 2008;479:213–22.

    Article  Google Scholar 

  29. Mahfuz H, Uddin M, Rangari VK, Saha MC, Zainuddin S, Jeelani S. High strain rate response of sandwich composites with nanophased cores. Appl Compos Mater. 2005;12:193–211.

    Article  CAS  Google Scholar 

  30. Wolska A, Goździkiewicz M, Ryszkowska J. Thermal and mechanical behavior of flexible polyurethane foams modified with graphite and phosphorous fillers. J Mater Sci. 2012;47:5627–34.

    Article  CAS  Google Scholar 

  31. Vinicius S, Leonardo M, Suelen M, Rosane L, Marcus S, Carlos L, Einloft S. Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polym Bull Springer J. 2013;70:1819–33.

    Article  Google Scholar 

  32. Haddadine N, Amrani F, Arrighi V, Cowie JMG. Interpolymer complexation in hydrolysed poly- (styrene-co-maleic anhydride)/poly (styrene-co-4-vinylpyridine). Eur Polym J. 2008;44:821–31.

    Article  Google Scholar 

  33. Haddadine N, Amrani F, Arrighi V, Cowie JM. Interpolymer complexation and thermal behaviour of poly (styrene-co-maleic acid)/poly (vinyl pyrrolidone) mixtures. Thermochim Acta. 2008;475:25–32.

    Article  Google Scholar 

  34. Ge XG, Wang DY, Wang C, Qu MH, Wang JS, Zhao CS, Jing XK, Wang YZ. A novel phosphorus-containing copolyester/montmorillonite nanocomposites with improved flame retardancy. Eur Polymer J. 2007;43(7):2882–90.

    Article  CAS  Google Scholar 

  35. Li Y, Zou J, Zhou S, Chen Y, Zhou H, Liang M, Lou W. Effect of expandable graphite particle size on the flame retardant, mechanical, and thermal properties of water-blown semi-rigid polyurethane foam. J Appl Polym Sci. 2014;131(3):1560–8.

    Google Scholar 

  36. Berta M, Lindsay C, Pans G, Camino G. Effect of chemical structure on combustion and thermal behavior of polyurethane elastomer layered silicate nanocomposites. Polym Degrad Stab. 2006;91(5):1179–91.

    Article  CAS  Google Scholar 

  37. Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci. 2009;34(10):1068–133.

    Article  CAS  Google Scholar 

  38. Thirumal M, Khastgir D, Nando GB, Naik YP, Singha NK. Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties. J Polym Degrad Stab. 2010;95(6):1138–45.

    Article  CAS  Google Scholar 

  39. Abdel Hakim AA, Nassar M, Emam A, Sultan M. Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Mater Chem Phys. 2011;129(1–2):301–7.

    Article  CAS  Google Scholar 

  40. Kramer RH, Zammarano M, Linteris GT, Gedde UW, Gilman JW. Heat release and structural collapse of flexible polyurethane foam. Polym Degrad Stab. 2010;95:1115–22.

    Article  Google Scholar 

  41. Levchik SV, Weil ED. Thermal decomposition, combustion and fire-retardancy of polyurethanes-a review of the recent literature. Polym Int. 2004;53(11):1585–610.

    Article  CAS  Google Scholar 

  42. Pan Y, Zhan J, Pan H, Wang W, Tang G, Song L, Yuan H. Effect of fully bio-based coatings constructed via layer-by-layer assembly of chitosan and lignosulfonate on the thermal, flame retardant and mechanical properties of flexible polyurethane foam. ACS Sustainable Chem Eng. 2016;4(3):1431–38.

    Article  CAS  Google Scholar 

  43. Lionetto F, Maffezzoli A. Relaxations during the postcure of unsaturated polyester networks by ultrasonic wave propagation, dynamic mechanical and dielectric analysis. J Polym Sci Part B Polym Phys. 2005;43(5):596–602.

    Article  CAS  Google Scholar 

  44. Sperling LH. Introduction to physical polymer science. New York: Wiley; 2006. p. 880.

    Google Scholar 

  45. Wolska A, Goździkiewicz M, Ryszkowsk J. Influence of graphite and wood-based fillers on the flammability of flexible polyurethane foams. J Mater Sci. 2012;47:5693–700.

    Article  CAS  Google Scholar 

  46. Yanzhou L, Shengtai Z, Huawei Z, Mei L. Effect of crosslinking density on resilient performance of low-resilience flexible polyurethane foams. Polym Eng Sci. 2015;55(2):308–15.

    Article  Google Scholar 

  47. Piszczyk L, Magdalena D, Mietlarek-Kropidłowska A, Szyszka M, Strankowski M. Synthesis and thermal studies of flexible polyurethane nanocomposite foams obtained using nanoclay modified with flame retardant compound. J Therm Anal Calorim. 2014;118(2):901–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mojtaba Zebarjad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz, M., Zebarjad, S.M., Daneshmanesh, H. et al. On the role of TiO2 nanoparticles on thermal behavior of flexible polyurethane foam sandwich panels. J Therm Anal Calorim 127, 2037–2048 (2017). https://doi.org/10.1007/s10973-016-5700-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5700-7

Keywords

Navigation