Skip to main content
Log in

Morphological study and thermal behaviour of an ammonium-titanium(IV) phosphate with pyrochlore-type structure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polycrystalline ammonium-titanium(IV) phosphate with pyrochlore-type structure has been obtained under hydrothermal conditions and characterised by powder X-ray thermodiffractometry (HT-pXRD), electron microscopy (SEM and TEM) and thermal analysis (TG/SDTA–MS). Moreover, the activation energy of thermal decomposition has been calculated as a function of the extent of conversion applying the Vyazovkin isoconversional method to the thermogravimetric data. The sample is constituted by nearly spherical plate-like particles (diameter ca. 25 nm) which in an aqueous medium are prone to auto-assembling to originate polycrystalline fibres. Thermogravimetric analysis showed significant differences between the thermal decomposition behaviour in inert (N2) and oxidiser (O2) atmospheres (e.g. the total mass loss), revealing the presence of a fraction of P(III) which oxidises to P(V) when the N2 atmosphere is replaced at 823 K by O2 atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Deer WA, Howie RA, Zussman J. An introduction to the rock forming minerals. Hong Kong: Longman; 1992.

    Google Scholar 

  2. Hogarth DD. Classification and nomenclature of the pyrochlore group. Am Minerol. 1977;62:403–10.

    CAS  Google Scholar 

  3. Salvadó MA, Pertierra P, García-Granda S, García JR, Fernández-García MT, Dooryhee E. Crystal structure, including H-atom positions, of Ti2O(PO4)2(H2O)2 determined from synchrotron X-ray and neutron powder data. Eur J Solid State Inorg Chem. 1997;34:1237–47.

    Google Scholar 

  4. Jaimez E, Bortun AI, Khainakov SA, Voitko II, García JR, Rodríguez J. Hydrothermal preparation of the mixed titanium (IV) phosphate-phenylphosphonates and characterization of their properties. J Mater Res. 1998;13:323–8.

    Article  CAS  Google Scholar 

  5. Clearfield A, Bortun AI, Bortun LN, García JR. Direct hydrothermal synthesis of zirconium phosphate and zirconium arsenate with a novel basic layered structure in alkaline media. Inorg Chem Commun. 1998;1:206–8.

    Article  CAS  Google Scholar 

  6. Khainakov SA, Bortun AI, Bortun LN, Clearfield A, Trobajo C, García JR. Hydrothermal synthesis and characterization of alkali metal titanium silicates. J Mater Chem. 1999;9:269–72.

    Article  CAS  Google Scholar 

  7. Bortun AI, Bortun LN, Khainakov SA, Clearfield A, Trobajo C, García JR. Hydrothermal synthesis and ion exchange properties of the novel framework sodium and potassium niobium silicates. Solvent Extr Ion Exch. 1999;17:649–75.

    Article  CAS  Google Scholar 

  8. Puziy AM, García JR. Synthesis, characterization and ion exchange properties of the framework sodium titanium germanate Na3H(TiO)3(GeO)(GeO4)3·7H2O. J Radioanal Nucl Chem. 1999;240:851–7.

    Article  CAS  Google Scholar 

  9. Salvadó MA, Pertierra P, García-Granda S, Espina A, Trobajo C, García JR. Hydrothermal synthesis and structure of Fe(NH3)2PO4: a novel monophosphate. Inorg Chem. 1999;38:5944–7.

    Article  Google Scholar 

  10. Trobajo C, Espina A, Jaimez E, Khainakov SA, García JR. Hydrothermal synthesis of iron(III) phosphates in the presence of urea. J Chem Soc Dalton Trans. 2000;5:787–90.

    Article  Google Scholar 

  11. García-Granda S, Salvadó MA, Pertierra P, Bortun AI, Khainakov SA, Trobajo C, Espina A, García JR. Hydrothermal synthesis and characterization of an ammonium titanium(IV) phosphate with pyrochlore-type structure. Inorg Chem Commun. 2001;4:555–7.

    Article  Google Scholar 

  12. Galwey AK, Brown ME. A theoretical justification for the application of the Arrhenius equation to kinetics of solid state reactions (mainly ionic crystals). Proc R Soc Lond A. 1995;450:501–12.

    Article  CAS  Google Scholar 

  13. Vyazovkin S. Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  14. Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.

    Article  CAS  Google Scholar 

  15. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  16. Simon P, Thomas P, Dubaj T, Cibulkova Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.

    Article  CAS  Google Scholar 

  17. Simon P. Isoconversional methods. Fundamentals, meaning and application. J Therm Anal Calorim. 2004;76:123–32.

    Article  CAS  Google Scholar 

  18. Maciejewski M. Computational aspects of kinetic analysis. Part B: The ICTAC Kinetics Project—the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta. 2000;355:145–54.

    Article  CAS  Google Scholar 

  19. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.

    Article  CAS  Google Scholar 

  20. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  21. Anderson A, Norby P. Structural aspects of the dehydration and dehydroxylation of γ-titanium phosphate, γ-Ti(PO4)(H2PO4)·2H2O. Inorg Chem. 1998;37:4313–20.

    Article  Google Scholar 

  22. Ono A. Preparation and properties of NH4Ti2P3O12 in the pseudobinary system NH4H2PO4TiO2. J Solid State Chem. 1985;56:260–2.

    Article  CAS  Google Scholar 

  23. Meagher EP, Lager GA. Polyhedral thermal expansion in the TiO2 polymorphs; refinement of the crystal structures of rutile and brookite at high temperature. Can Mineral. 1979;17:77–85.

    CAS  Google Scholar 

  24. Horn M, Schwerdtfeger CF, Meagher EP. Refinement of the structure of anatase at several temperatures. Z Kristallogr Kristallgeom Kristallphys Kristallchem. 1972;136:273–81.

    Article  CAS  Google Scholar 

  25. Wu W, Cai J, Liu R. Isoconversional kinetic analysis of distributed activation energy model processes for pyrolysis of solid fuels. Ind Eng Chem Res. 2013;52:14376–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by “Ministerio de Economía y Competitividad” (MAT2013-40950-R, MAT2011-27573-C04-02), “Gobierno del Principado de Asturias” (GRUPIN14-060) and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camino Trobajo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Glez, J., Alfonso, B.F., Huidobro, J.A. et al. Morphological study and thermal behaviour of an ammonium-titanium(IV) phosphate with pyrochlore-type structure. J Therm Anal Calorim 125, 1087–1093 (2016). https://doi.org/10.1007/s10973-016-5585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5585-5

Keywords

Navigation