Skip to main content
Log in

Thermal decomposition behavior and de-intercalation kinetics of kaolinite/quaternary ammonium salt complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kaolinite/quaternary ammonium salt complexes were prepared by intercalation and displacement of kaolinite–N-methylformamide (Kaol–NMF) with methanol (Me) and quaternary ammonium salt. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry and differential scanning calorimetry (TG–DSC) analysis. The d-values of the kaolinite/quaternary ammonium salts complexes increase with the alkyl chain length of the quaternary ammonium salts. Based on the results and the available evidence pointing toward the interlayer structure of kaolinite intercalation complexes, the most possible structural model for the kaolinite/quaternary ammonium salt intercalation complexes was proposed. For the kaolinite–dodecyl trimethyl ammonium chloride, kaolinite–trimethyl tetradecyl ammonium chloride and kaolinite–hexadecyltrimethylammonium chloride, the intercalation molecules are oriented perpendicular to the kaolinite surface in a single layer. However, for kaolinite–stearyl trimethyl ammonium chloride, the cationic head of intercalated stearyl trimethyl ammonium chloride molecules may be partially hydrated and arrayed aslant in the interlayer space of kaolinite with an inclination angle of 35°. Thermal analysis results revealed that the thermal decomposition of kaolinite/quaternary ammonium salt complexes occurs in two main steps. The function of the most probable mechanism, activation energy E and pre-exponential factor were obtained by mutual authentication using KAS and Ozawa methods, Satava integral method and Achar–Brindley–Sharp–Wendworth methods. The average activation energy E of four kaolinite/quaternary ammonium salt intercalation complexes is 108.147, 153.478, 125.723 and 88.008 kJ mol−1, respectively. The optimized mechanism function for de-intercalation process of quaternary ammonium salt is f(α) = 1 − α and G(α) = −ln(1 − α).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li YF, Sun DW, Pan XB, Zhang B. Kaolinite intercalation precursors. Clay Clay Miner. 2009;57(6):779–86.

    Article  CAS  Google Scholar 

  2. Cheng H, Liu Q, Liu J, Sun B, Kang Y, Frost RL. TG-MS-FTIR (evolved gas analysis) of kaolinite-urea intercalation complex. J Therm Anal Calorim. 2014;116(1):195–203.

    Article  CAS  Google Scholar 

  3. Cheng H, Liu Q, Yang J, Zhang Q, Frost RL. Thermal behavior and decomposition of kaolinite-potassium acetate intercalation composite. Thermochim Acta. 2010;503–504:16–20.

    Article  Google Scholar 

  4. Makó É, Kristóf J, Horváth E, Vágvölgyi V. Kaolinite–urea complexes obtained by mechanochemical and aqueous suspension techniques—a comparative study. J Colloid Interface Sci. 2009;330(2):367–73.

    Article  Google Scholar 

  5. Costanzo P, Giesse R. Ordered halloysite; dimethylsulfoxide intercalate. Clay Clay Miner. 1986;34(1):105–7.

    Article  CAS  Google Scholar 

  6. Theng B. Intercalation method using formamide for differentiating halloysite from kaolinite. Clay Clay Miner. 1984;32(4):241–8.

    Article  Google Scholar 

  7. Cruz MDR, Franco F. Thermal behavior of the kaolinite-hydrazine intercalation complex. Clay Clay Miner. 2000;48(1):63–7.

    Article  CAS  Google Scholar 

  8. Frost RL, Kristof J, Horvath E, Kloprogge JT. Rehydration and phase changes of potassium acetate-intercalated halloysite at 298 k. J Colloid Interface Sci. 2000;226(2):318–27.

    Article  CAS  Google Scholar 

  9. Kuroda Y, Ito K, Itabashi K, Kuroda K. One-step exfoliation of kaolinites and their transformation into nanoscrolls. Langmuir. 2011;27(5):2028–35.

    Article  CAS  Google Scholar 

  10. Matusik J, Gaweł A, Bahranowski K. Grafting of methanol in dickite and intercalation of hexylamine. Appl Clay Sci. 2012;56(1):63–7.

    Article  CAS  Google Scholar 

  11. Cheng H, Hou X, Liu Q, Li X, Frost RL. New insights into the molecular structure of kaolinite–methanol intercalation complexes. Appl Clay Sci. 2015;109–110:55–63.

    Article  Google Scholar 

  12. Komori Y, Sugahara Y, Kuroda K. Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate. Appl Clay Sci. 1999;15(1–2):241–52.

    Article  CAS  Google Scholar 

  13. Gardolinski JE, Carrera LCM, Cantao MP, Wypych F. Layered polymer-kaolinite nanocomposites. J Mater Sci. 2000;35(12):3113–9.

    Article  CAS  Google Scholar 

  14. Gardolinski JE, Ramos LP, de Souza GP, Wypych F. Intercalation of benzamide into kaolinite. J Colloid Interface Sci. 2000;221(2):284–90.

    Article  CAS  Google Scholar 

  15. Cheng H, Liu Q, Zhang J, Yang J, Frost RL. Delamination of kaolinite-potassium acetate intercalates by ball-milling. J Colloid Interface Sci. 2010;348(2):355–9.

    Article  CAS  Google Scholar 

  16. Franco F, Pérez-Maqueda LA, Pérez-Rodríguez JL. The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. J Colloid Interface Sci. 2004;274(1):107–17.

    Article  CAS  Google Scholar 

  17. Gardolinski JEFC, Lagaly G. Grafted organic derivatives of kaolinite: I. Synthesis, chemical and rheological characterization. Clay Miner. 2005;40:537–46.

    Article  CAS  Google Scholar 

  18. Gardolinski J, Lagaly G. Grafted organic derivatives of kaolinite: Ii. Intercalation of primary n-alkylamines and delamination. Clay Miner. 2005;40(4):547–56.

    Article  CAS  Google Scholar 

  19. Benazzouz BK, Zaoui A. Thermal behaviour and superheating temperature of kaolinite from molecular dynamics. Appl Clay Sci. 2012;58:44–51.

    Article  CAS  Google Scholar 

  20. Šatava V. Mechanism and kinetics from non-isothermal tg traces. Thermochim Acta. 1971;2(5):423–8.

    Article  Google Scholar 

  21. Elder JP. The ‘e–ln(a)–f(α)’ triplet in non-isothermal reaction kinetics analysis. Thermochim Acta. 1998;318(1–2):229–38.

    Article  CAS  Google Scholar 

  22. Sharp JH, Wentworth SA. Kinetic analysis of thermogravimetric data. Anal Chem. 1969;41(14):2060–2.

    Article  CAS  Google Scholar 

  23. Komori Y, Sugahara Y. A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite. J Mater Res. 1998;13(4):930–4.

    Article  CAS  Google Scholar 

  24. Uwins PJR, Mackinnon IDR, Thompson JG, Yago AJE. Kaolinite-nmf intercalates. Clay Clay Miner. 1993;41(6):707–17.

    Article  CAS  Google Scholar 

  25. Caglar B. Structural characterization of kaolinite-nicotinamide intercalation composite. J Mol Struct. 2012;1020:48–55.

    Article  CAS  Google Scholar 

  26. Matusik J, Scholtzova E, Tunega D. Influence of synthesis condition on the formation of a kaolintie-methanol complex and simulation its vibrational spectra. Clay Clay Miner. 2012;60(3):227–39.

    Article  CAS  Google Scholar 

  27. Lapides I, Yariv S. Thermo-x-ray-diffraction analysis of dimethylsulfoxide-kaolinite intercalation complexes. J Therm Anal Calorim. 2009;97(1):19–25.

    Article  CAS  Google Scholar 

  28. Tonle IK, Letaief S, Ngameni E, Detellier C. Nanohybrid materials from the grafting of imidazolium cations on the interlayer surfaces of kaolinite. Application as electrode modifier. J Mater Chem. 2009;19(33):5996–6003.

    Article  CAS  Google Scholar 

  29. Caglar B, Çırak Ç, Tabak A, Afsin B, Eren E. Covalent grafting of pyridine-2-methanol into kaolinite layers. J Mol Struct. 2013;1032:12–22.

    Article  CAS  Google Scholar 

  30. Hirsemann D, Köster TKJ, Wack J, van Wüllen L, Breu J, Senker J. Covalent grafting to μ-hydroxy-capped surfaces? A kaolinite case study. Chem Mater. 2011;23(13):3152–8.

    Article  CAS  Google Scholar 

  31. Yui T, Uppili SR, Shimada T, Tryk DA, Yoshida H, Inoue H. Microscopic structure and microscopic environment of a polyfluorinated surfactant/clay hybrid compound: Photochemical studies of rose bengal. Langmuir. 2002;18(11):4232–9.

    Article  CAS  Google Scholar 

  32. He H, Frost RL, Bostrom T, Yuan P, Duong L, Yang D, et al. Changes in the morphology of organoclays with HDTMA+ surfactant loading. Appl Clay Sci. 2006;31(3–4):262–71.

    Article  CAS  Google Scholar 

  33. Ledoux RL, White JL. Infrared study of the OH group in expanded kaolinite. Science. 1964;143(3603):244–6.

    Article  CAS  Google Scholar 

  34. Frost RL, Kristof J, Kloprogge JT, Horvath E. Rehydration of potassium acetate-intercalated kaolinite at 298 k. Langmuir. 2000;16(12):5402–8.

    Article  Google Scholar 

  35. Cheng H, Liu Q, Yang J, Zhang J, Frost RL, Du X. Infrared spectroscopic study of halloysite-potassium acetate intercalation complex. J Mol Struct. 2011;990(1–3):21–5.

    Article  CAS  Google Scholar 

  36. Venkataraman NV, Vasudevan S. Conformation of methylene chains in an intercalated surfactant bilayer. J Phys Chem B. 2001;105(9):1805–12.

    Article  CAS  Google Scholar 

  37. MacPhail RA, Strauss HL, Snyder RG, Elliger CA. Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains. J Phys Chem. 1984;88(3):334–41.

    Article  CAS  Google Scholar 

  38. Cheng H, Liu Q, Yang J, Ma S, Frost RL. The thermal behavior of kaolinite intercalation complexes-a review. Thermochim Acta. 2012;545:1–13.

    Article  CAS  Google Scholar 

  39. Matusik J, Kłapyta Z, Olejniczak Z. NMR and IR study of kaolinite intercalation compounds with benzylalkylammonium chlorides. Appl Clay Sci. 2013;83–84:426–32.

    Article  Google Scholar 

  40. Wang W, Li L, Xi S. A Fourier transform infrared study of the coagel to micelle transition of cetyltrimethylammonium bromide. J Colloid Interface Sci. 1993;155(2):369–73.

    Article  CAS  Google Scholar 

  41. Brown KG, Bicknell-Brown E, Ladjadj M. Raman-active bands sensitive to motion and conformation at the chain termini and backbones of alkanes and lipids. J Phys Chem. 1987;91(12):3436–42.

    Article  CAS  Google Scholar 

  42. Kristof J, Frost RL, Felinger A, Mink J. FTIR spectroscopic study of intercalated kaolinite. J Mol Struct. 1997;410–411:119–22.

    Google Scholar 

  43. Frost RL, Kristof J, Tran TH. Kinetics of deintercalation of potassium acetate from kaolinite; a Raman spectroscopic study. Clay Miner. 1998;33(4):605–17.

    Article  CAS  Google Scholar 

  44. Vaia RA, Teukolsky RK, Giannelis EP. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater. 1994;6(7):1017–22.

    Article  CAS  Google Scholar 

  45. Lagaly G. Characterization of clays by organic compounds. Clay Miner. 1981;16(1):1–21.

    Article  CAS  Google Scholar 

  46. Beneke K, Lagaly G. The brittle mica-like KNiAsO4 and its organic derivatives. Clay Miner. 1982;17(2):175–83.

    Article  CAS  Google Scholar 

  47. Kwolek T, Hodorowicz M, Stadnicka K, Czapkiewicz J. Adsorption isotherms of homologous alkyldimethylbenzylammonium bromides on sodium montmorillonite. J Colloid Interface Sci. 2003;264(1):14–9.

    Article  CAS  Google Scholar 

  48. Brindley GW, Moll WF. Complexes of natural and synthetic ca-montmorillonites with fatty acids. Am Mineral. 1965;50:1355–70.

    CAS  Google Scholar 

  49. Yuan P, Tan D, Annabi-Bergaya F, Yan W, Liu D, Liu Z. From platy kaolinite to aluminosilicate nanoroll via one-step delamination of kaolinite: effect of the temperature of intercalation. Appl Clay Sci. 2013;83–84:68–76.

    Article  Google Scholar 

  50. Zhou Q, Shen W, Zhu J, Zhu R, He H, Zhou J, et al. Structure and dynamic properties of water saturated CTMA-montmorillonite: molecular dynamics simulations. Appl Clay Sci. 2014;97–98:62–71.

    Article  Google Scholar 

  51. Cheng H, Li K, Liu Q, Zhang S, Li X, Frost RL. Insight into the thermal decomposition of kaolinite intercalated with potassium acetate: An evolved gas analysis. J Therm Anal Calorim. 2014;117(3):1231–9.

    Article  CAS  Google Scholar 

  52. Sahnoune F, Saheb N, Khamel B, Takkouk Z. Thermal analysis of dehydroxylation of Algerian kaolinite. J Therm Anal Calorim. 2012;107(3):1067–72.

    Article  CAS  Google Scholar 

  53. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  54. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  55. Wen X, He H, Zhu J, Jun Y, Ye C, Deng F. Arrangement, conformation, and mobility of surfactant molecules intercalated in montmorillonite prepared at different pillaring reagent concentrations as studied by solid-state NMR spectroscopy. J Colloid Interface Sci. 2006;299(2):754–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Beijing Nova Program (xx2015B081), Beijing Natural Science Foundation (8164062) and Beijing talent plan (2014000020124G164), and the Open Research Project of State Key Laboratory for Coal Resources and Safe Mining, China University of Mining & Technology (SKLCRSM14KFB02)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongfei Cheng or Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Xu, P., Wang, D. et al. Thermal decomposition behavior and de-intercalation kinetics of kaolinite/quaternary ammonium salt complexes. J Therm Anal Calorim 126, 421–433 (2016). https://doi.org/10.1007/s10973-016-5572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5572-x

Keywords

Navigation