Skip to main content
Log in

Thermal behaviour of low-rank Indian coal fines agglomerated with an organic binder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combustion kinetic parameters of the carbonized agglomerated coal fines (ACFs) were determined by thermogravimetric analysis under oxy-non-isothermal conditions for planning, designing, and operating the related combustion systems at an industrial scale. Friedman and Flynn–Wall–Ozawa methods were applied to determine the activation energies (E) and pre-exponential factors (A) of the thermal decomposition of ACFs. The multivariate nonlinear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed the n-dim. Avrami–Erofeev (An) and nth-order (Fn) mechanism responsible for the decomposition of the carbonized ACFs. The activation energy of the combustion of carbonized ACFs is found to be in the range of 132.75–191.57 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chakrabarti RK, Dutta ML, Borgohain JN, Haque R, Iyengar MS. On production of nodulized fuel from Assam coal fines. J Mines Met Fuel. 1972; October.

  2. Baruah BP. Techno-economic studies for the manufacture of coke breeze from Konya coals, Tuensang District, Nagaland. Jorhat: A Project Report, CSIR-NEIST; 2012.

    Google Scholar 

  3. Budrugeac P. Thermokinetic study of the thermo-oxidative degradation of a composite epoxy resin material. Rev Roum Chim. 2013;58(4–5):371–9.

    CAS  Google Scholar 

  4. Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101:5601–8.

    Article  CAS  Google Scholar 

  5. Safi MJ, Mishra IM, Prasad B. Global degradation kinetics of pipe needles in air. Thermochim Acta. 2004;412:155–62.

    Article  CAS  Google Scholar 

  6. Shen DK, Gu S, Luo KH, Bridgwater AV, Fang MX. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel. 2009;88:1024–30.

    Article  CAS  Google Scholar 

  7. Dumanli AG, Tas S, Yurum Y. Co-firing of biomass with coals. J Therm Anal Calorim. 2012;107(1):293–8.

    Article  Google Scholar 

  8. Wu K, Liu J, Wu Y, Chen Y, Li Q, Xiao X, Yang M. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. Bioresour Technol. 2014;163:18–25.

    Article  CAS  Google Scholar 

  9. Alwani MS, Abdul Khalil HPS, Sulaiman O, Islam N, Dungani R. An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study (Review). J Therm Anal Calorim. 2012;108(1):9–17.

    Article  Google Scholar 

  10. Sinem T, Yuda Y. Co-firing of biomass with coals: part 2. Thermogravimetric kinetic analysis of co-combustion of fir (Abies bornmulleriana) wood with Beypazari lignite. J Therm Anal Calorim. 2012;107(1):293–8.

    Article  Google Scholar 

  11. Khare P, Sarma M, Baruah BP. Chemometric application for thermal behaviour of Blends of Bamboo with Solid Fossile Fuel. Environ Prog Sustain Energy. 2014;33(1):315–21.

    Article  CAS  Google Scholar 

  12. Yadav V, Baruah BP, Khare P. Comparative study of thermal properties of bio-coal from aromatic spent with low rank sub-bituminous coals. Bioresour Technol. 2013;137:376–85.

    Article  CAS  Google Scholar 

  13. Kastanaki E, Vamvuka D. A comparative reactivity and kinetics study on the combustion of coal–biomass char blends. Fuel. 2006;85:1186–93.

    Article  CAS  Google Scholar 

  14. Xie Z, Ma X. The thermal behaviour of the co-combustion between paper sludge and rice straw. Bioresour Technol. 2013;146:611–8.

    Article  CAS  Google Scholar 

  15. Zhang LM, Tan ZC, Wang SD, Wu DY. Combustion calorimetric and thermogravimetric studies of graphite and coal doped with a coal-burning additive. Thermochim Acta. 1997;299:13–7.

    Article  CAS  Google Scholar 

  16. Xiaowei L, Jean-Charles R, Suyuan Y. Effect of temperature on graphite oxidation behaviour. Nucl Eng Des. 2004;227:273–80.

    Article  Google Scholar 

  17. Filho CG, Milioli FE. A thermogravimetric analysis of the combustion of a Brazilian mineral coal. Quim Nova. 2008;31(1):98–103.

    Article  Google Scholar 

  18. Li X, Rathnam RK, Yu J, Wang Q, Wall T, Meesri C. Pyrolysis and combustion characteristics of an Indonesian low-rank coal under O2/N2 and O2/CO2 conditions. Energy Fuels. 2010;24:160–4.

    Article  CAS  Google Scholar 

  19. Muthuraman M, Namioka T, Yoshikawa K. A comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: a thermogravimetric analysis. Fuel Process Technol. 2010;91(5):550–8.

    Article  CAS  Google Scholar 

  20. Zhang Y, Gu M, Ma B, Chu H. Study on co-combustion characteristics of superfine coal with conventional size coal in O2/CO2 atmosphere. Energy Power Eng. 2013;5:36–40.

    Article  CAS  Google Scholar 

  21. Das T, Saikia BK, Dutta DK, Bordoloi D, Baruah BP. Agglomeration of low rank Indian coal fines with an organic binder and the thermal behaviour of the agglomerate produced. Fuel. 2015;147:269–78. doi:10.1016/j.fuel.2014.10.050.

    Article  CAS  Google Scholar 

  22. Lopeza FA, El Hadad AA, Alguacil FJ, Centeno TA, Lobato B. Kinetics of the thermal degradation of granulated scrap tyres: a model-free analysis. Mat Sci. 2013;19(4):403–8.

    Google Scholar 

  23. Lopeza FA, Sierra MJ, Rodriguez O, Millan R, Alguacil FJ. Non-isothermal kinetics of the thermal desorption of mercury from a contaminated soil. Rev Metal. 2014;50(1):1–10. doi:10.3989/revmetalm.001.

    Google Scholar 

  24. Mortari DA, Avila I, dos Santos AM, Crnkovic PM. Study of thermal decomposition and ignition temperature of Bagasse, coal and their blends. Therm Eng. 2010;9:81–8.

    Google Scholar 

  25. Salehi M, Clemens F, Graule T, Grobety B. Kinetic analysis of the polymer burnout in ceramic thermoplastic processing of the YSZ thin electrolyte structure using model free method. Appl Energy. 2013;95:147–55.

    Article  Google Scholar 

  26. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  27. Aboulkas A, EI Harfi K. Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen. Oil Shale. 2008;25(4):426–43.

    Article  CAS  Google Scholar 

  28. Bilabo R, Mastral JF, Aldea ME, Ceamanos J. Kinetics study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere. J Anal Appl Pyrol. 1997;39:53–64.

    Article  Google Scholar 

  29. Liu NA, Fan W, Dobashi R, Huang L. Kinetic modelling of thermal decomposition of natural cellulosic materials in air atmosphere. J Anal Appl Pyrol. 2002;63:303–25.

    Article  CAS  Google Scholar 

  30. Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM. Thermal analysis and devolatization kinetics of cotton stalk, sugar cane bagases and shea meal under nitrogen and air atmospheres. Bioresour Technol. 2009;100:1413–8.

    Article  CAS  Google Scholar 

  31. Wang C, Wang F, Yang Q, Liang R. Thermogravimetric studies of the behaviour of wheat straw with added coal during combustion. Biomass Bioenerg. 2009;33:50–6.

    Article  Google Scholar 

  32. Yorulmaz SY, Atimtay AT. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Process Technol. 2009;90:939–46.

    Article  CAS  Google Scholar 

  33. Jankovic BZ. Kinetic analysis of the non-isothermal decomposition of potassium metabisulfate using the model-fitting and isoconversional (model free) methods. Chem Eng J. 2008;139:128–35.

    Article  CAS  Google Scholar 

  34. Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advance isoconversional methods complex mechanism and isothermal predicted conversion-time curves. Chemomet Intell Lab Syst. 2009;96:219–26.

    Article  CAS  Google Scholar 

  35. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  36. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  37. Doyle C. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    Article  CAS  Google Scholar 

  38. Friedman H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry, Application to a phenolic plastic. J Polym Sci (Part C). 1964;6:183–95.

    Article  Google Scholar 

  39. Gańczyk K, Zygmunt A, Gołofit T. Thermal properties of TEX decomposition or sublimation. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5476-9.

  40. Pielichowska K. The influence of polyoxymethylene molar mass on the oxidative thermal degradation of its nanocomposites with hydroxyapatite. J Therm Anal Calorim. 2016;124:751–65.

    Article  CAS  Google Scholar 

  41. Saikia BK, Baruah RK, Gogoi PK, Baruah BP. A thermal investigation on coals from Assam. Fuel Proc Technol. 2009;90:196–203.

    Article  CAS  Google Scholar 

  42. Thakur DS, Nuttall HE Jr. Kinetics of pyrolysis of Moroccan oil-shale by thermogravimetry. Ind Eng Chem Res. 1987;26(7):1351–6.

    Article  CAS  Google Scholar 

  43. Otero M, Gómez X, Garcıá AI, Morán A. Effects of sewage sludge blending on the coal combustion: a thermogravimetric assessment. Chemosphere. 2007;69:1740–50.

    Article  CAS  Google Scholar 

  44. Cumming JW, Mclaughlin J. The thermogravimetric behaviour of coal. Thermochim Acta. 1982;57:253–72.

    Article  CAS  Google Scholar 

  45. Cumming JW. Reactivity assessment of coals via a weighted mean activation energy. Fuel. 1984;63:1436–40.

    Article  CAS  Google Scholar 

  46. Sahu SG, Sarkar P, Mukherjee A, Adak AK, Chakraborty N. Studies on the co-combustion behaviour of coal/biomass blends using thermogravimetric analysis. Int J Emerg Technol Adv Eng. 2013;3(Special Issue 3):131–8.

    Google Scholar 

  47. ASTM Standard D 5341-93. Standard method for measuring the coke reactivity index (CRI) and coke strength after reaction (CSR).

  48. ISO/CD 18894. Coke-determination of coke reactivity index (CRI) and coke strength after reaction (CSR).

  49. Machado JGMS, Osorio E, Vilela ACF. Reactivity of Brazilian coal and blends aiming to their injection into blast furnaces. Mater Res. 2010;13(3):287–92.

    Article  CAS  Google Scholar 

  50. Ng KW, MacPhee JA, Giroux L, Todoschuk T. Reactivity of bio-coke with CO2. Fuel Process Technol. 2011;92:801–4.

    Article  CAS  Google Scholar 

  51. Huo W, Zhou Z, Chen X, Dai Z, Yu G. Study on gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars. Bioresour Technol. 2014;159:143–9.

    Article  CAS  Google Scholar 

  52. Takayuki T, Hashimot K, Silveston PL. Reactivities of 34 coals under steam gasification. Fuel. 1985;64:1438–42.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to the CSIR, New Delhi, for funding (MLP-6000-WP-III). Many thanks are also given to all the staff of Coal Chemistry pilot plant (CSIR-NEIST) for their assistance during the study. Authors express special thanks to Mr. Priyam Jyoti Bora of Advance Materials Group, CSIR-NEIST, Jorhat, for his assistance in particle size analysis of the samples. Authors also express special appreciations to the editor and reviewers for their constructive comments to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binoy K. Saikia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Baruah, B.P. & Saikia, B.K. Thermal behaviour of low-rank Indian coal fines agglomerated with an organic binder. J Therm Anal Calorim 126, 435–446 (2016). https://doi.org/10.1007/s10973-016-5564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5564-x

Keywords

Navigation