Skip to main content
Log in

Thermal properties of modified banana trunk fibers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of an agrowaste, namely banana trunk fibers (BTF) were investigated by thermogravimetry (TG) and derivative thermogravimetry (DTG) up to 900 °C at different heating rates (from 5 to 100 °C/min). The BTF was subjected to modification by means of various known chemical methods (mercerization, acetylation, peroxide treatment, esterification, and sulfuric acid treatment). Various degradation models, such as the Kissinger, Friedman, and Flynn–Wall–Ozawa were used to determine the apparent activation energy. The obtained apparent activation energy values (149–210 kJ/mol) allow in developing a simplified approach to understand the thermal decomposition behavior of natural fibers as a function of polymer composite processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zena S, Ng L, Simon C, Elkamel A. Renewable agricultural fibers as reinforcing fillers in plastics prediction of thermal properties. J Therm Anal Calorim. 2009;96:85–90.

    Article  Google Scholar 

  2. Li Y, Mai YW, Ye L. Sisal fibers and its composites; a review of recent developments. Compos Sci Technol. 2000;60:2037–55.

    Article  CAS  Google Scholar 

  3. Kumar S, Choudhary V, Kumar R. Study on the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix. J Therm Anal Calorim. 2010;102:751–61.

    Article  CAS  Google Scholar 

  4. Mohd Edeerozey AM, Md Akil H, Azhar AB, Zainal AMI. Chemical modification of kenaf fibers. Mater Lett. 2007;61:2020–5.

    Google Scholar 

  5. John MJ, Thomas S. Biofibers and biocomposites review. Carbohyd Polym. 2008;71:343–64.

    Article  CAS  Google Scholar 

  6. Sreekala MS, Thomas S, Neelakantan NR. Utilization of short oil palm fiber bunch fruit (OPEFB) as a reinforcement in phenol-formaldehyde resins: studies on mechanical properties. J Polym Eng. 1997;16:265–94.

    Article  Google Scholar 

  7. Selzer R, Friedrich K. Influence of water-up-take on interlaminar fracture properties. Influence of water up-take on interlaminar fracture properties of carbon fiber-reinforced polymer composites. J Mater Sci. 1995;30:334–8.

    Article  CAS  Google Scholar 

  8. Rana AK, Manda A, Mitra BC, Jacobson R, Rowell R, Banerjee AN. Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J Appl Polym Sci. 1997;69:329–38.

    Article  Google Scholar 

  9. Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J. Improvement of plant based natural fibers for toughening green composites-effect of load application during mercerization of ramie fibers. Compos A. 2006;37:2213–20.

    Article  Google Scholar 

  10. Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I. Effects of fiber treatment on wettability and mechanical behavior of flax/polypropylene composites. Compos Sci Technol. 2003;60:1247–54.

    Article  Google Scholar 

  11. Awal A, Ghosh SB, Sain M. Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. J Therm Anal Calorim. 2010;99:695–701.

    Article  CAS  Google Scholar 

  12. Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ. 2007;15:25–33.

    Article  Google Scholar 

  13. Ray D, Sarkar BK, Rana AK, Bose NR. Effect of alkali treated jute fibers on composite properties. Bull Mater Sci. 2001;24:129–35.

    Article  CAS  Google Scholar 

  14. Mishra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK. Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromol Mater Eng. 2001;286:107–13.

    Article  CAS  Google Scholar 

  15. Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Vepoes I. Influence of processing and chemical treatment of flax fibers on their composites. Compos Sci Technol. 2003;63:1241–6.

    Article  Google Scholar 

  16. Saheb DN, Jog JP. Natural fiber polymer composites: a review. Adv Polym Technol. 1999;18:351–5.

    Article  CAS  Google Scholar 

  17. Maya J, Bejoy F, Sabu T, Varughese KT. Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polym Compos. 2006;27:671–80.

    Article  Google Scholar 

  18. Guimarãesa JL, Frollini E, da Silva CG, Wypychc F, Satyanarayana KG. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind Crop Prod. 2009;30:407–15.

    Article  Google Scholar 

  19. Bilba K, Arsene MA, Ouensanga A. Study of banana and coconut fibers; botanical composition, thermal degradation and textural observations. Bioresour Technol. 2007;98:8–68.

    Article  Google Scholar 

  20. Nolasco AM, Soffner MLAP, Nolasco AC. Physical–mechanical characterization of banana fiber, Musa cavendish-nanicão variety. In: Mattoso LHC, Leão AL, Frollini E, editors. Second international symposium on natural polymers and composites. Sao Carlos: Embrapa Agricultural Instrumentation, São Paulo University (USP), São Paulo State University (UNESP); 1998.

    Google Scholar 

  21. Satyanarayana KG, Wypych F. Characterization of natural fibers. In: Fakirov S, Bhattacharya D, editors. Engineering biopolymers: homopolymers, blends and composites. Munich: Hanser Publishers; 2007.

    Google Scholar 

  22. Kulkarni AG, Satyanarayana KG, Rohatgi PK. Mechanical properties of banana fibers (Musa Sepientum). J Mater Sci. 1983;18:2290–6.

    Article  Google Scholar 

  23. Idicula M, Malhotra SK, Joseph K, Thomas S. Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fiber reinforced polyester composites. Compos Sci Technol. 2005;65:1077–87.

    Article  CAS  Google Scholar 

  24. Pothan LA, Thomas S, Groeninckx G. The role of fiber/matrix interactions on the dynamic mechanical properties of chemically modified banana fiber/polyester composites. Compos A. 2006;27:1260–9.

    Article  Google Scholar 

  25. Sapuan SM, Leenie A, Harimi M, Beng YK. Mechanical properties of woven banana fiber reinforced epoxy composites. Mater Des. 2006;27:689–93.

    Article  CAS  Google Scholar 

  26. Kalia S, Kaith BS, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci. 2009;49:1253–72.

    Article  CAS  Google Scholar 

  27. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    CAS  Google Scholar 

  28. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry, application of a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Google Scholar 

  29. Flynn JH, Wall LA. General treatment of thermogravimetry of polymers. J Res Natl Bur Stand A. 1966;70:487–523.

    CAS  Google Scholar 

  30. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  31. Horsfall M, Spiff AI. Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (wild cocoyam) biomass. Electron J Biotechnol. 2004;7:313–23.

    Google Scholar 

  32. Sreekala MS, Thomas S. Effect of fiber surface modification on water sorption characteristics of oil palm fibers. Compos Sci Technol. 2003;53:861–9.

    Article  Google Scholar 

  33. Paul A, Joseph K, Thomas S. Effect of surface treatment on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Technol. 1997;57:67–79.

    Article  CAS  Google Scholar 

  34. Banerjee SS, Joshi MV, Jayaram RV. Treatment of oil spill by sorption technique using fatty acid grafted sawdust. Chemosphere. 2006;64:1026–31.

    Article  CAS  Google Scholar 

  35. Azhar SS, Liew GA, Suhardy D, Farizul K, Hatim MD. Dye removal from aqueous solution by using adsorption on treated sugarcane bagasse. Am J Appl Sci. 2005;2:1499–503.

    Article  CAS  Google Scholar 

  36. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  37. Antal MJ, Varhegyi G. Cellulose pyrolysis kinetics the current state knowledge. Ind Eng Chem Res. 1995;34:703–17.

    Article  CAS  Google Scholar 

  38. Corradini E, Teixeira M, Paladin PD, Agnelli JA, Silva ORRF, Mattoso LHC. Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis. J Therm Anal Calorim. 2009;2:415–9.

    Article  Google Scholar 

  39. Yang HP, Yan R, Chen HP, Zheng CG, Lee DH, Liang DT. Mechanism of palm oil wastes pyrolysis in a packed bed. Energy Fuels. 2006;20:1120–8.

    Google Scholar 

  40. Ouajai S, Shanks RA. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab. 2005;89:327–35.

    Article  CAS  Google Scholar 

  41. Jandura P, Riedl B, Kokta BV. Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polym Degrad Stab. 2000;70:387–94.

    Article  CAS  Google Scholar 

  42. Alvarez P, Blanco C, Santamaria R, Granda M. Improvement of the thermal stability of lignocellulosic materials by treatment with sulfuric acid and potassium hydroxide. J Anal Appl Pyrolysis. 2004;72:131–9.

    Article  CAS  Google Scholar 

  43. Vollhardt KPC. Organic chemistry. New York: Freeman; 1987.

    Google Scholar 

  44. Maciejewski M. Computational aspects of kinetic analysis, part B: The ICTAC kinetics project—the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta. 2000;355:145–54.

    Article  CAS  Google Scholar 

  45. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis, part A: The ICTAC kinetics, project: data, methods, and results. Thermochim Acta Spec. 2000;355:125–43.

    Article  CAS  Google Scholar 

  46. Malek J. The kinetic-analysis of nonisothermal data. Thermochim Acta. 1992;200:257–69.

    Article  CAS  Google Scholar 

  47. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  48. Mas Haris MRH, Kathiresan S. The removal of methyl red from aqueous solutions using banana pseudostem fibers. Am J Appl Sci. 2009;6:1690–700.

    Article  CAS  Google Scholar 

  49. Sen AK, Kumar S. Coir-fiber-based fire retardant nano filler for epoxy composites. J Therm Anal Calorim. 2010;101:265–71.

    Article  CAS  Google Scholar 

  50. Brígida AIS, Calado VMA, Gonçalves LRB, Coelho MAZ. Effect of chemical treatments on properties of green coconut fiber. Carbohhyd Polym. 2010;79:32–838.

    Google Scholar 

  51. Sun XF, Xu F, Sun RC, Wang YX, Fowler P, Baird MS. Characteristics of degraded lignins obtained from steam exploded wheat straw. Polym Degrad Stab. 2004;86:45–256.

    Google Scholar 

  52. Grabber JH. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci. 2005;45:820–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is partially funded by the Ministry of Science, Technology, and Innovation (MOSTI) of Malaysia. The authors are also grateful to the School of Chemical Sciences, Universiti Sains Malaysia, and the Faculty of Applied Sciences, AIMST University for providing the facilities to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathiresan Sathasivam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathasivam, K., Haris, M.R.H.M. Thermal properties of modified banana trunk fibers. J Therm Anal Calorim 108, 9–17 (2012). https://doi.org/10.1007/s10973-011-1793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1793-1

Keywords

Navigation