Skip to main content
Log in

Thermal and dynamic mechanical analysis of bovine hide

Effect of chrome-tanning process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Dynamic mechanical and thermal analysis has been used to investigate the effects of chrome tanning on the viscoelastic properties of an indigenous Kenyan Boran bovine hide. It has been shown that this technique can be used to assess the effects of the leather-making processes on the final leather. From the results, each process of the leather making can be customized for certain application fields. For instance, tanning has shown to enhance the storage modulus (E′), shear stress (σ) and thermal stability at all frequencies and temperatures while decreases the loss modulus (E″), loss factor, viscosity (η) and shear strain (ε). All the properties exhibited dispersion with two distinct frequency ranges: 0.1–30 and 30–100 Hz. The properties become less frequency dependent at frequencies higher than 30 Hz. Tanning enhances E″ at frequencies lower than 30 Hz but lowers E″ at higher frequency than 30 Hz. The dominant elastic nature of hides implies that the majority of the mechanical energy is dissipated by elastic deformation. The properties investigated showed an increase with temperature before drastic drops at specific temperatures. It can be noted that tanned hide stores more residue stress, and its molecular chains are easier to slide over each other when shearing forces are applied compared to pickled hide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Odlyha M, Foster GM, Cohen NS, Larsen R. Characterization of leather samples by non-invasive dielectric and thermomechanical techniques. Therm Anal Calorim. 2000;59:587–600.

    Article  CAS  Google Scholar 

  2. Jin Z, Pramoda KP, Xu G, Goh SH. Dynamic mechanical behavior of melt-processes multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chem Phys Lett. 2001;337:43–7.

    Article  CAS  Google Scholar 

  3. Lakes RS. Viscoelastic measurement techniques. Am Inst Phys. 2004;75:797–810.

    CAS  Google Scholar 

  4. Kalachandra S, Minton RJ, Takamata T, Taylor DF. Characterization of commercial soft liners by dynamic mechanical analysis. J Mater Sci Mater Med. 1995;6:218–22.

    Article  CAS  Google Scholar 

  5. Wu JY, Lin HC, Hsu JS, Yip MC, Fang W. Static and dynamic mechanical properties of polydimethylsiloxane/carbon nanotube nanocomposites. Thin Solid Films. 2009;517:4895–901.

    Article  CAS  Google Scholar 

  6. Cucos A, Budrugeac P. The suitability of the DMA method for the characterization of recent and historical parchments and leathers. Int J Conserv Sci. 2010;1:13–8.

    Google Scholar 

  7. Arivazhagan A, Masood SH. Dynamic mechanical properties of ABS material processed by fused deposition modelling. Int J Eng Res Appl IJERA. 2012;2:2009–14.

    Google Scholar 

  8. Mas J, Vidaurre A, Meseguer JM, Romero F, Pradas MM, Ribelles JL, Maspoch ML, Santana OO, Pages P, Perez-Folch J. Dynamic mechanical properties of polycarbonate and acrylonitrile–butadiene–styrene copolymer blends. J Appl Polym Blends. 2002;83:1507–16.

    Article  CAS  Google Scholar 

  9. Sturrock EJ, Boote C, Attenburrow GE, Meek KM. The effects of the biaxial stretching of leather on fiber orientation and tensile modulus. J Mater Sci. 2004;39:2481–6.

    Article  CAS  Google Scholar 

  10. Nalyanya KM, Rop RK, Onyuka A, Kamau J. Tensile properties of indigenous Kenyan Boran pickled and tanned bovine hide. Int J of Sci Res. 2015;4:2149–54.

    Google Scholar 

  11. Wright DM, Attenburrow GE. The set and mechanical behavior of partially processed leather dried under strain. J Mater Sci. 2000;35:1353–7.

    Article  CAS  Google Scholar 

  12. Tuckermann M, Mertig M, Pompe W. Stress measurements on chrome tanned leather. J Mater Sci. 2001;36:1789–99.

    Article  CAS  Google Scholar 

  13. Jeyapalina S, Attenburrow GE, Covington AD. Dynamic mechanical thermal analysis (DMTA) of leather part 1: effect of tanning agent on the glass transition temperature of collagen. J Soc Leather Technol Chem. 2007;91:236–42.

    CAS  Google Scholar 

  14. Chen Y, Zhang M, Liu W, Li G. Properties of alkali-solubilized collagen solution cross-linked by N-hydroxysuccinimide activated adipic acid. Korea-Austr Rheol J. 2011;23:41–8.

    Article  Google Scholar 

  15. Nalyanya KM, Rop RK, Onyuka A, Migunde PO, Ngumbu RG. Influence of UV radiation on the viscoelastic properties and dynamic viscosity of bovine hide using dynamic mechanical analysis. J Therm Anal Calorim. 2016;123:363–70. doi:10.1007/s10973-015-4851-2.

    Article  CAS  Google Scholar 

  16. Bosch T, Manich AM, Carilla J, Palop R, Cot J. Characterization of retanned chrome bovine leather by thermomechanical analysis. J Appl Polym Sci. 2000;82:314–22.

    Article  Google Scholar 

  17. Flossmann G, Folk R, Moser G. Critical frequency dependence of the shear viscosity. Int J Thermophy. 2001;22:89–100.

    Article  CAS  Google Scholar 

  18. Gautieri A, Vesentini S, Redaelli A, Buehler MJ. Viscoelastic properties of model segments of collagen molecules. Matrix Biol. 2012;31:141–9.

    Article  CAS  Google Scholar 

  19. Rameshwaram JK, Dao TT. Measurement and prediction of fluid viscosities at high shear rates. In: Durairaj R, editor. Rheology-New concepts, applications and methods. Bordentown, NJ: INTECH; 2013. p. 81–90.

    Google Scholar 

  20. Nalyanya KM, Rop RK, Onyuka A, Migunde PO, Ngumbu RG. Thermal and mechanical analysis of pickled and tanned cowhide: effect of solar radiations. J Appl Polym Sci. 2015;. doi:10.1002/app.43208.

    Google Scholar 

  21. Patel SK, Malone S, Cohen C, Gillmor JR, Colby RH. Elastic modulus and equilibrium swelling of poly (dimethylsiloxane) networks. Macromolecules. 1992;25:5241–51.

    Article  CAS  Google Scholar 

  22. Covington AD. Modern tanning chemistry. Chem Soc Rev. 1997;26:111–26.

    Article  CAS  Google Scholar 

  23. Ward IM, Hadley DW. An introduction to the mechanical properties of solid polymers. New York: Wiley; 1993.

    Google Scholar 

  24. Gunasekaran S, Ak MM. Dynamic oscillatory shear testing of foods—selected applications. Trends Food Sci Technol. 2000;11:115–27.

    Article  CAS  Google Scholar 

  25. Clasen C, Kulicke WM. Determination of viscoelastic and rheo-optical material functions of water soluble cellulose derivatives. Prog Polym Sci. 2001;26:1839–919.

    Article  CAS  Google Scholar 

  26. Doi M, Takimoto JI. Molecular modelling of entanglement. Philos Trans R Soc Lond A. 2003;361:641–52.

    Article  CAS  Google Scholar 

  27. Liu CK, Latona NP, Lee J, Cooke PH. Microscopic observations of leather looseness and its effects on mechanical properties. JALCA. 2009;140:230–6.

    Google Scholar 

  28. Billmer WF. Textbook of polymer science. 3rd ed. London: Applied Science Publishers; 1984. p. 366–7.

    Google Scholar 

  29. Lai GL, Li Y, Li GY. Effect of concentration and temperature on the rheological behavior of collagen solution. Int J Biol Macromol. 2008;42:285–91.

    Article  CAS  Google Scholar 

  30. Kasapis S, Mitchell JR. Definition of the rheological glass transition temperature in association with the concept of iso-free-volume. Int J Biol Macromol. 2001;29:315–21.

    Article  CAS  Google Scholar 

  31. Korhonen M, Hellen L, Hirvonen J, Yliruusi J. Rheological properties of creams with four different surfactant combinations-effect of storage time and conditions. Int J Pharm. 2001;221:187–96.

    Article  CAS  Google Scholar 

  32. Sai BP, Babu M. Studies on Rana tigerrina skin collagen. Comp Biochem Physiol B: Biochem Mol Biol. 2001;128:81–90.

    Article  CAS  Google Scholar 

  33. Machado AAS, Martins VCA, Plepis AMG. Thermal and rheological behavior of collagen chitosan blends. J Therm Anal Calorim. 2002;67:491–8.

    Article  CAS  Google Scholar 

  34. Duan L, Li J, Li C, Li G. Effects of NaCl on the rheological behavior of collagen solution. Korea-Aust Rheol J. 2013;25:137–44.

    Article  Google Scholar 

  35. Ju H, Dan W, Hu Y, Lin H, Dan N. Dynamic rheological properties of type 1 collagen fibrils. J Mech Med biol. 2013;13:1340015–26.

    Article  Google Scholar 

  36. Carnali JO. A dispersed anisotropic phase as the origin of the weak-gel properties of aqueous xanthan gum. J Appl Polym Sci. 1991;43:929–41.

    Article  CAS  Google Scholar 

  37. Lapasin R, Pricl S. Rheology of industrial polysaccharides: theory and applications. London: Blackie Academic and Professional; 1995.

    Book  Google Scholar 

  38. Morris ER, Gothard MGE, Hember MWN, Manning CE, Robinson G. Conformational and rheological transitions of wellan, rhamsan and acylated gellan. Carbohydr Polym. 1996;30:165–75.

    Article  CAS  Google Scholar 

  39. Flory PJ, Garrett RR. Phase transitions in collagen and gelatin systems. J Am Chem Soc. 1958;80:4836–45.

    Article  CAS  Google Scholar 

  40. Pietrucha K. Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies. Int J Biol Macromol. 2005;36:299–304.

    Article  CAS  Google Scholar 

  41. Xue D, Sethi R. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. J Nanoparticle Res. 2012;. doi:10.1007/S11051-012-1239-0.

    Google Scholar 

  42. Zhang Z, Li G, Shi B. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J Soc Leather Technol Chem. 2006;90:23–8.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support by the National Commission for Science, Technology and Innovation (NACOSTI)—Kenya for the Research Grant of 2014–2015. Authors also acknowledge Mr. Alvin Sasia of Kenya Industrial Research and Development Institute (KIRDI-Nairobi) for the acquistion and preparation of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kallen Mulilo Nalyanya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalyanya, K.M., Rop, R.K., Onyuka, A.S. et al. Thermal and dynamic mechanical analysis of bovine hide. J Therm Anal Calorim 126, 725–732 (2016). https://doi.org/10.1007/s10973-016-5535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5535-2

Keywords

Navigation