Skip to main content
Log in

TG–MS study on the effect of multi-walled carbon nanotubes and nano-Fe2O3 on thermo-oxidative stability of silicone rubber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, an investigation was focused on how carbon nanotubes and nano-Fe2O3 improved the thermo-oxidative stability of silicone rubber (SR). A series of nanoparticles, including carbon nanotubes (CNTs), Fe2O3 with two different crystalline forms (α-Fe2O3 and γ-Fe2O3), a mixture of CNTs and γ-Fe2O3 (γ-Fe2O3 + CNTs), and γ-Fe2O3-modified CNTs (γ-Fe2O3 − CNTs), were involved in this article. Thermal degradation characteristics of SR samples filled with these nanoparticles were investigated through thermogravimetric analysis equipped with mass spectroscopy system (TG–MS), and the evolutions of prominent volatiles corresponding to different stages of decomposition were recorded. It was discovered that these nanoparticles affected the thermo-oxidative stability of SR in different ways. While CNTs had an effect of delaying every stage of the degradation of silicone rubber, Fe2O3 inhibited the oxidation of the side methyl, in which γ-Fe2O3 had better performance. γ-Fe2O3 − CNTs had the best effect on preventing the side methyl from degradation, which can be seen from the remarkable decreases in methanol, methanoic acid and methane by 58.91, 57.27 and 27.45 %, respectively. This effect was superior to CNTs, γ-Fe2O3 or a mixture of both at the same addition amount. Herein, the reason for the different performance of these nanoparticles, which make a profound contribution to further improvement in thermo-oxidative stability of SR, has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu M, Chung DDL. A three-dimensionally interconnected metal-spring network in a silicone matrix as a resilient and electrically conducting composite material. Composites. 1992;23:355–63.

    Article  CAS  Google Scholar 

  2. Miwa M, Takeno A, Hara K, Watanabe A. Volume fraction and temperature dependence of mechanical properties of silicone rubber particulate/epoxy blends. Composites. 1995;26:371–7.

    Article  CAS  Google Scholar 

  3. Genovese A, Shanks RA. Fire performance of poly(dimethyl siloxane) composites evaluated by cone calorimetry. Compos Part A Appl Sci Manuf. 2008;39:398–405.

    Article  Google Scholar 

  4. Hanu LG, Simon GP, Cheng YB. Thermal stability and flammability of silicone polymer composites. Polym Degrad Stab. 2006;91:1373–9.

    Article  CAS  Google Scholar 

  5. Guo J, Zeng X, Li H, Luo Q. Effect of curatives and fillers on vulcanization, mechanical, heat aging, and dynamic properties of silicone rubber and fluororubber blends. J Elastom Plast. 2012;44:145–63.

    Article  CAS  Google Scholar 

  6. Liu YR, Huang YD, Liu L. Thermal stability of POSS/methylsiliconenanocomposites. Compos Sci Technol. 2007;67:2864–76.

    Article  CAS  Google Scholar 

  7. Anyszka R, Bielniski DM, Pedzich Z, Szumera M. Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites. J Therm Anal Calorim. 2015;119:111–21.

    Article  CAS  Google Scholar 

  8. Zhu M, Chung DDL. Resilient composite of silicone and foamed tin as a new material for electrical and thermal contacts. Composites. 1991;22:219–26.

    Article  CAS  Google Scholar 

  9. Wilson B, Ricardo FS, Fernando G. Interfacial reactions and self-adhesion of polydimethylsiloxanes. J Adhes Sci Technol. 1992;6:791–805.

    Article  Google Scholar 

  10. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  11. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, et al. Nanotube molecular wires as chemical sensors. Science. 2000;287:622–5.

    Article  CAS  Google Scholar 

  12. Park SJ, Bae KM, Seo MK. A study on rheological behavior of MWCNTs/epoxy composites. J Ind Eng Chem. 2010;16:337–9.

    Article  CAS  Google Scholar 

  13. Jiang MJ, Dang ZM, Xu HP, Yao SH, Bai J. Effect of aspect ratio of multiwall carbon nanotubes on resistance-pressure sensitivity of rubber nanocomposites. Appl Phys Lett. 2007;91:072907.

    Article  Google Scholar 

  14. Liu CH, Fan SS. Nonlinear electrical conducting behavior of carbon nanotube networks in silicone elastomer. Appl Phys Lett. 2007;90:041905.

    Article  Google Scholar 

  15. Raza MA, Westwood AVK, Stirling C, Hondow N. Transport and mechanical properties of vapour grown carbon nanofibre/silicone composites. Compos Part A Appl Sci Manuf. 2011;42:1335–43.

    Article  Google Scholar 

  16. Watts PCP, Fearon PK, Hsu WK, Billingham NC, Kroto HW, Walton DRM. Carbon nanotubes as polymer antioxidants. J Mater Chem. 2003;13:491–5.

    Article  CAS  Google Scholar 

  17. Shen ZQ, Bateman S, Wu DY, Mcmahon P, Dell’Olio M, Gotama J. The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Compos Sci Technol. 2009;69:239–44.

    Article  CAS  Google Scholar 

  18. Lewicki JP, Liggat JJ, Patel M. The thermal degradation behaviour of polydimethylsiloxane/montmorillonite nanocomposites. Polym Degrad Stab. 2009;94:1548–57.

    Article  CAS  Google Scholar 

  19. Lewicki JP, Liggat JJ, Pethrick RA, et al. Investigating the ageing behavior of polysiloxane nanocomposites by degradative thermal analysis. Polym Degrad Stab. 2008;93:158–68.

    Article  CAS  Google Scholar 

  20. Hamdani S, Longuet C, Perrin D, et al. Flame retardancy of silicone-based materials. Polym Degrad Stab. 2009;94:465–95.

    Article  CAS  Google Scholar 

  21. Li HY, Tao S, Huang YH, Su ZT, Zheng JP. The improved thermal oxidative stability of silicone rubber by using iron oxide and carbon nanotubes as thermal resistant additives. Compos Sci Technol. 2013;76:52–60.

    Article  CAS  Google Scholar 

  22. Albis A, Ortiz E, Suárez A, Piñeres I. TG/MS study of the thermal devolatization of Copoazu peels. J Therm Anal Calorim. 2014;115:275–83.

    Article  CAS  Google Scholar 

  23. Campostrini R, Abdellatief M, Leoni M, Scardi P. Activation energy in the thermal decomposition of MgH2 powders by coupled TG–MS measureňments. Part 1. Comparison among TG- and MS- data processing. J Therm Anal Calorim. 2014;116:225–40.

    Article  CAS  Google Scholar 

  24. Ksepko E, Labojko G. Effective direct chemical looping coal combustion with bi-metallic Fe-Cu oxygen carriers studied using TG-MS techniques. J Therm Anal Calorim. 2014;117:151–62.

    Article  CAS  Google Scholar 

  25. Chang J, Fang YF. Quantitative analysis of accelerated carbonation products of the synthetic calcium silicate hydrate(C-S-H) by QXRD and TG/MS. J Therm Anal Calorim. 2015;119:57–62.

    Article  CAS  Google Scholar 

  26. Camino G, Lomakin SM, Lazzari M. Polydimethylsiloxane thermal degradation Part 1. Kinet Asp Polym. 2001;42:2395–402.

    CAS  Google Scholar 

  27. Camino G, Lomakin SM, Legeard M. Thermal polydimethylsiloxane degradation Part 2. The degradation mechanisms. Polymer. 2002;43:2011–5.

    Article  CAS  Google Scholar 

  28. Yu C, Shi L, Yao Z, Li D, et al. Thermal conductance and thermo-power of an individual single-wall carbon nanotube. Nano Lett. 2005;5:1842–6.

    Article  CAS  Google Scholar 

  29. Moisala A, Li Q, Kinloch IA, Windle AH. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos Sci Technol. 2006;66:1285–8.

    Article  CAS  Google Scholar 

  30. Chua TP, Mariatti M, Azizan A, Rashid AA. Effects of surface-functionalized multi-walled carbon nanotubes on the properties of poly(dimethyl siloxane) nanocomposites. Compos Sci Technol. 2010;70:671–7.

    Article  CAS  Google Scholar 

  31. Zboril R, Mashlan M, Petridis D. Iron(III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem Mater. 2002;14:969–82.

    Article  CAS  Google Scholar 

  32. Tronc E, Chaneac C, Jolivet JP. Structural and magnetic characterization of ε-Fe2O3. J Solid State Chem. 1998;139:93–104.

    Article  CAS  Google Scholar 

  33. Yu H, Quan X, Chen S, et al. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J Phys Chem C. 2007;111:12987–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the National Natural Science Foundation of China (Grant No. 51273143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, H. & Zheng, J. TG–MS study on the effect of multi-walled carbon nanotubes and nano-Fe2O3 on thermo-oxidative stability of silicone rubber. J Therm Anal Calorim 126, 733–742 (2016). https://doi.org/10.1007/s10973-016-5527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5527-2

Keywords

Navigation