Skip to main content
Log in

Effective direct chemical looping coal combustion with bi-metallic Fe–Cu oxygen carriers studied using TG-MS techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper contains the results of research on a promising combustion technology known as chemical looping combustion (CLC). The noteworthy advantage of CLC is that a concentrated CO2 stream can be obtained after water condensation without any energy penalty for CO2 separation. The objective of this work was to prepare novel bi-metallic Fe–Cu oxygen carriers and to evaluate the performance of these carriers for the CLC process with hard coal/air. One-cycle CLC tests were conducted with supported Fe–Cu oxygen carriers in thermogravimetric analyzer (TG) utilizing hard coal as a fuel. The effects of the oxygen carrier chemical composition, particle size, and steam addition on the reaction rates were determined. The fractional reduction, fractional oxidation, and the reaction rates were calculated from the TG data. Notably, the support had a considerable effect on the reaction performance. Moreover, bi-metallic Fe–Cu oxygen carriers exhibited significantly improved reactivity compared with monometallic Fe oxygen carriers. Furthermore, the addition of a second reactive metal oxide stabilized the oxygen carrier structure. The oxidation reaction was significantly faster than the reduction reaction for all supported Fe–Cu oxygen carriers. The TG data indicated that these oxygen carriers had stable performances up to 900 °C and may be effectively used for direct coal CLC reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Richter HJ, Knoche KF. In: Gaggioli RA, editor. Reversibility of combustion process in efficiency and costing second law analysis of process, vol. 235., ACS Symposium SeriesWashington: American Chemical Society; 1983. p. 71.

    Chapter  Google Scholar 

  2. Brandvoll Ø, Bolland O. Chemical looping combustion: fuel conversion with inherent CO2 capture. J Eng Gas Turbines Power. 2004;126:316–21.

    Article  CAS  Google Scholar 

  3. Cui Y, Cao Y, Pan W. Preparation of copper-based oxygen carrier supported by titanium dioxide. J Therm Anal Calorim. 1007;. doi:10.1007/s10973-013-3131-2.

  4. Zhao H, Cao Y, Orndorff W, Pan W. Study on modification of Cu-based oxygen carrier for chemical looping combustion. J Therm Anal Calorim. 2013;113:1123–8.

    Article  CAS  Google Scholar 

  5. Adanez J, Diego LF, Labiano FG, Gayan P, Abad P. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels. 2004;18:371–7.

    Article  CAS  Google Scholar 

  6. Takenaka S, Dinh V, Son T, Otsuka K. Storage and supply of pure hydrogen from methane mediated by modified iron oxides. Energy Fuels. 2004;18:820–9.

    Article  CAS  Google Scholar 

  7. Zhao H, Cao Y, Kang Z, Wang Y, Pan W. Thermal characteristics of Cu-based oxygen carriers. J Therm Anal Calorim. 2012;109:1105–9.

    Article  CAS  Google Scholar 

  8. Siriwardane RV, Poston J, Chaudhari K, Zinn A, Simonyi T, Robinson C. Chemical-looping combustion of simulated synthesis gas using nickel oxide oxygen carrier supported on bentonite. Energy Fuels. 2007;3:1582–91.

    Article  Google Scholar 

  9. Los Rios TD, Gutierrez DL, Martinez VC, Ortiz AL. Redox stabilization effect of TiO2 in Co3O4 as oxygen carrier for the production of hydrogen through POX and chemical looping processes. Inter J Chem React Eng. 2005;3:1–9.

    Google Scholar 

  10. Jin H, Okamoto T, Ishida M. Development of a novel chemical-looping combustion: synthesis of a looping material with a double metal oxide of CoO–NiO. Energy Fuels. 1998;12:1272–7.

    Article  CAS  Google Scholar 

  11. Hossain MM, Sedor KE, de Lasa HI. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion: desorption kinetics and metal–support interaction. Chem Eng Sci. 2007;62:5464–72.

    Article  CAS  Google Scholar 

  12. Gu Z, Li K, Wang H, Wei Y, Yan D, Qiaob T. Syngas production from methane over CeO2–Fe2O3 mixed oxides using a chemical looping method. Kinet Catal. 2013;54:326–33.

    Article  CAS  Google Scholar 

  13. Siriwardane RV, Ksepko E, Tian H, Poston J, Simonyi T, Sciazko M. Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal. Appl Energy. 2013;107:111–23.

    Article  CAS  Google Scholar 

  14. Wu X, Zhou K, Wu W, Cui X, Li Y. Magnetic properties of nanocrystalline CuFe2O4 and kinetics of thermal decomposition of precursor. J Therm Anal Calorim. 2013;111:9–16.

    Article  CAS  Google Scholar 

  15. Cui X, Zhang X, Feng Y, Wang G, Yang M, Gao H, Luo W. Effect of partial substitution of Ca in LaMnO3 on coal catalytic combustion. J Therm Anal Calorim. 2013;112:719–26.

    Article  CAS  Google Scholar 

  16. Readman JE, Olafsen A, Larring Y, Blom R. La0.8Sr0.2Co0.2Fe0.8O3–δ as a potential oxygen carrier in a chemical looping type reactor an in situ powder X-ray diffraction study. J Mater Chem. 2005;15:1931–7.

    Article  CAS  Google Scholar 

  17. Song H, Doroodchi E, Moghtaderi B. Redox characteristics of Fe–Ni/SiO2 bimetallic oxygen carriers in CO under conditions pertinent to chemical looping combustion. Energy Fuels. 2012;26:75–84.

    Article  CAS  Google Scholar 

  18. Rydén M, Lyngfelt A, Mattisson T. Combined manganese/iron oxides as oxygen carrier for chemical looping combustion with oxygen uncoupling (CLOU) in a circulating fluidized bed reactor system. Energy Procedia. 2011;4:341–8.

    Article  Google Scholar 

  19. Azimi G, Leion H, Mattisson T, Lyngfelt A. Chemical-looping with oxygen uncoupling using combined Mn–Fe oxides testing in batch fluidized bed. Energy Procedia. 2011;4:370–7.

    Article  CAS  Google Scholar 

  20. Zafar Q, Abad A, Mattisson T, Gevert B, Strand M. Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particles for chemical-looping combustion. Chem Eng Sci. 2007;62:6556–67.

    Article  CAS  Google Scholar 

  21. Ksepko E, Siriwardane RV, Tian H, Simonyi T, Sciazko M. Effect of H2S on chemical looping combustion of coal-derived synthesis gas over Fe–Mn oxides supported on sepiolite ZrO2 and Al2O3. Energy Fuels. 2012;26:2461–72.

    Article  CAS  Google Scholar 

  22. Son SR, Kim SD. Chemical-looping combustion with NiO and Fe2O3 in a thermobalance and circulating fluidized bed reactor with double loops. Ind Eng Chem Res. 2006;45:2689–96.

    Article  CAS  Google Scholar 

  23. Wang BW, Yan R, Zhao HB, Zheng Y, Liu ZH, Zheng CG. Investigation of chemical looping combustion of coal with CuFe2O4 oxygen carrier. Energy Fuels. 2011;25:3344–54.

    Article  CAS  Google Scholar 

  24. Wang SZ, Wang GX, Jiang F, Luo M, Li HY. Chemical looping combustion of coke oven gas by using Fe2O3/CuO with MgAl2O4 as oxygen carrier. Energy Environ Sci. 2010;3:1353–60.

    Article  CAS  Google Scholar 

  25. Siriwardane R, Tian H, Richards G, Simonyi T, Poston J. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energy Fuels. 2009;23:3885–92.

    Article  CAS  Google Scholar 

  26. Eyring EM, Konya G, Lighty JS, Sahir A, Sarofim A, Whitty K. Chemical looping with copper oxide as carrier and coal as fuel. Oil Gas Sci Technol. 2011;66:209–21.

    Article  CAS  Google Scholar 

  27. Sahir A, Sohn HY, Leion H, Lighty JS. Rate analysis of chemical-looping with oxygen uncoupling (CLOU) for solid fuels. Energy Fuels. 2012;26:4395–404.

    Article  CAS  Google Scholar 

  28. Ksepko E. Sewage sludge ash as an alternative low-cost oxygen carrier for chemical looping combustion. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3564-7.

    Google Scholar 

  29. Kök MV. Temperature-controlled combustion and kinetics of different rank coal samples. J Therm Anal Calorim. 2005;79:175–80.

    Article  Google Scholar 

  30. Ozbas KE, Kök MV, Hicyilmaz C. Comparative kinetic analysis of raw and cleaned coals. J Therm Anal Calorim. 2002;69:541–9.

    Article  CAS  Google Scholar 

  31. Lyon RK, Cole JA. Unmixed combustion: an alternative to fire Combust. Flame. 2000;121:249–61.

    Article  CAS  Google Scholar 

  32. Leion H, Mattison T, Lyngfelt A. Solid fuels in chemical-looping combustion. Int J Greenh Gas Control. 2008;2:180–93.

    Article  CAS  Google Scholar 

  33. Leion H, Mattison T, Lyngfelt A. The use of petroleum coke as fuel in chemical-looping combustion. Fuel. 2007;86:1947–58.

    Article  CAS  Google Scholar 

  34. Berguerand N, Lyngfelt A. The use of petroleum coke as fuel in a 10 kWth chemical-looping combustor. Int J Greenh Gas Control. 2008;2:169–79.

    Article  CAS  Google Scholar 

  35. Scott SA, Dennis JS, Hayhurst AN, Brown T. In situ gasification of a solid fuel and CO2 separation using chemical looping. AIChE J. 2006;52:3325–8.

    Article  CAS  Google Scholar 

  36. Wolf J, Yan J. Parametric study of chemical looping combustion for tri-generation of hydrogen, heat, and electrical power with CO2 capture. Int J Energy Res. 2005;29:739–53.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from a project by the Polish Ministry of Higher Education and Science (No. 685/N-USA/2010/0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewelina Ksepko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ksepko, E., Łabojko, G. Effective direct chemical looping coal combustion with bi-metallic Fe–Cu oxygen carriers studied using TG-MS techniques. J Therm Anal Calorim 117, 151–162 (2014). https://doi.org/10.1007/s10973-014-3674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3674-x

Keywords

Navigation