Skip to main content
Log in

Thermal behavior of phthalic anhydride-based polyesters

Part I. Influence of the polyol on the thermal stability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of three phthalic polyesters with 1,2 propylene glycol, trimethylolpropane and glycerin were synthesized in a molar ratio anhydride:polyol of 1:1.25 so that a rather linear macromolecular chains were obtained with side alchyl and/or hydroxyl groups. The thermal behavior was estimated by means of the thermoanalytical curves obtained under non-isothermal conditions in dynamic air atmosphere, in order to estimate the polyol influence on the thermal stability of phthalic polyesters. A quantitative estimation of the thermal stability was possible due to a kinetic analysis using three different data processing methods. Only the modified NPK method allows a complete quantitative and objective description of the thermodegradation rate. From the three prepared polyesters, that one with glycerin presented the lowest thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang P, et al. Thermal stability of aromatic polyesters prepared from diphenolic acid and its esters. Polym Degrad Stab. 2009;94(8):1261–6.

    Article  CAS  Google Scholar 

  2. Hansen D, et al. Synthesis and characterization of polyesters derived from glycerol and phthalic acid. Mater Res. 2007;10(3):257–60.

    Article  Google Scholar 

  3. Modra D, Vlase G, Albu P, Bolcu C, Vlase T. Influence of the nature of the chain breaker on the thermal stability of phthalic anhydride-based polyesters. J Therm Anal Calorim. 2015;121(3):1021–30.

    Article  CAS  Google Scholar 

  4. Albu P, Vlase G, Modra D, Bolcu C, Vlase T. Thermal behaviour of the polyesters obtained with different molar ratios of carboxyl hydroxyl components. J Therm Anal Calorim. 2015;121(3):983–8.

    Article  Google Scholar 

  5. Bolcu C, Modra D, Vlase G, Doca N, Mihali C, Vlase T. Synthesis and thermal behavior of some diisocyanate-silane compounds. J Therm Anal Calorim. 2014;115(1):489–94.

    Article  CAS  Google Scholar 

  6. Bolcu C, Vlase G, Vlase T, Albu P, Doca N, Sisu E. Thermal behavior of some polyurethanes reticulated by aminated maltose. J Therm Anal Calorim. 2013;113(3):1409–14.

    Article  CAS  Google Scholar 

  7. Albu P, Bolcu C, Vlase G, Doca N, Vlase T. Kinetics of degradation under non-isothermal conditions of a thermooxidative stabilized polyurethane. J Therm Anal Calorim. 2011;105(2):685–9.

    Article  CAS  Google Scholar 

  8. Vlase T, Bolcu C, Vlase G, Mogos A, Doca N. Thermooxidative stabilization of a MDI. J Therm Anal Calorim. 2010;99(3):973–9.

    Article  CAS  Google Scholar 

  9. Vlase T, Vlase G, Doca N, Iliescu S, Ilia G. Thermo-oxidative degradation of polymers containing phosphorus in the main chain. High Perform Polym. 2010;22(7):863–75.

    Article  CAS  Google Scholar 

  10. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  11. Friedman HL. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry: application to a phenolic resin. J Polym Sci. 1965;6C:183–95.

    Google Scholar 

  12. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  13. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  14. Patrutescu C, Vlase G, Turcus V, Ardelean D, Vlase T, Albu P. TG/DTG/DTA data used for determining the kinetic parameters of the thermal degradation process of an immunosuppressive agent: mycophenolate mofetil. J Therm Anal Calorim. 2015;121(3):983–8.

    Article  CAS  Google Scholar 

  15. Ledeti I, Vlase G, Vlase T, Bercean V, Fulias A. Kinetic of solid state degradation of transitional coordinative compounds containing functionalized 1,2,4-triazolic ligand. J Therm Anal Calorim. 2015;121(3):1049–57.

    Article  CAS  Google Scholar 

  16. Ledeti I, Vlase G, Vlase T, Doca N, Bercean V, Fulias A. Thermal decomposition, kinetic study and evolved gas analysis of 1,3,5-triazine-2,4,6-triamine. J Therm Anal Calorim. 2014;118(2):1057–63.

    Article  CAS  Google Scholar 

  17. Fulias A, Vlase G, Vlase T, Onetiu D, Doca N, Ledeti I. Thermal degradation of B-group vitamins: B-1, B-2 and B-6. J Therm Anal Calorim. 2014;118(2):1033–8.

    Article  CAS  Google Scholar 

  18. Fuliaş A, Vlase G, Vlase T, Soica C, Heghes A, Craina M, Ledeti I. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data. Chem Centr J. 2013;7(1):70.

    Article  Google Scholar 

  19. Fulias A, Vlase G, Grigorie C, Ledeţi I, Albu P, Bilanin M, Vlase T. Thermal behaviour studies of procaine and benzocaine: part 1. Kinetic analysis of the active substances under non-isothermal conditions. J Therm Anal Calorim. 2013;113(1):265–71.

    Article  CAS  Google Scholar 

  20. Wall ME. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, editors. A practical approach to microarray data analysis, vol. 9. MA: Kluwer-Norwel; 2003. p. 91–109. LANL LA-UR-02.

  21. Śestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by POSCCE Grant No. 12PO102418/5124/22.05.2014, SMIS 50328: “New energetic efficient technology for synthesis of polyester copolymers”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus Vlase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlase, G., Bolcu, C., Modra, D. et al. Thermal behavior of phthalic anhydride-based polyesters. J Therm Anal Calorim 126, 287–292 (2016). https://doi.org/10.1007/s10973-016-5509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5509-4

Keywords

Navigation