Skip to main content
Log in

Melting behavior and oxidation resistance of Ce–Sn alloy designed for lead-free solder manufacturing

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ce–Sn pre-alloy (master alloy) was designed for new lead-free solder alloy manufacturing. The microstructure characterization revealed the presence of CeSn3 particles in the Sn matrix. The melting behavior in air was investigated by differential thermal analysis coupled with thermogravimetric analysis. When melting was finished, the pre-alloy started to oxidize instantly, because of a high affinity between CeSn3 and Ce itself to oxygen. The oxidation process of Ce–Sn pre-alloy is described in detail. The solidus (231 °C) and liquidus (485 °C) temperatures of the alloy were determined by differential scanning calorimetry (DSC). By repetitive DSC measurement, it has been verified that this alloy had to be re-melted in an inert gas atmosphere to prevent oxidation. The master alloy is ultimately used to produce new Ce-containing Sn–Ag–Cu solder alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang W-T, Zhang X-M, Gao Z-G, Jia Y-Z, Ye L-Y, Zheng D-W, Liu L. Influences of Ce addition on the microstructures and mechanical properties of 2519A aluminum alloy plate. J Alloys Compd. 2010;491:366–71.

    Article  CAS  Google Scholar 

  2. Wu L, Cui Ch, Wu R, Li J, Zhan H, Zhang M. Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg–Li–Al–Zn-based alloy. Mater Sci Eng A. 2011;528:2174–9.

    Article  Google Scholar 

  3. Jeong HY, Kim B, Kim S-G, Kim HJ, Park SS. Effect of Ce addition on the microstructure and tensile properties of extruded Mg–Zn–Zr alloys. Mater Sci Eng A. 2014;612:217–22.

    Article  CAS  Google Scholar 

  4. Zhang Q, Tong L, Cheng L, Jiang Z, Meng J, Zhang H. Effect of Ce/La microalloying on microstructural evolution of Mg–Zn–Ca alloy during solution treatment. J Rare Earth. 2015;33(1):70.

    Article  CAS  Google Scholar 

  5. Krupinski M, Krupinska B, Rdzawski Z, Labisz K, Tanski T. Additives and thermal treatment influence on microstructure of nonferrous alloys. J Therm Anal Calorim. 2015;120:1573–83.

    Article  CAS  Google Scholar 

  6. Loomans ME, Fine ME. Tin–silver–copper eutectic temperature and composition. Metall Mater Trans A. 2000;31A:1155–62.

    Article  CAS  Google Scholar 

  7. Moon KW, Boettinger WJ, Kattner UR, Biancaniello FS, Handwerker CA. Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys. J Electron Mater. 2000;29:1122–236.

    Article  CAS  Google Scholar 

  8. Pilloni M, Ennas G, Cabras V, Denotti V, Kumar VB, Musinu A, Porat Z, Scano A, Gedanken A. Thermal and structural characterization of ultrasonicated Bi–Sn alloy in the eutectic composition. J Therm Anal Calorim. 2015;120:1543–51.

    Article  CAS  Google Scholar 

  9. Kim KS, Huh SH, Suganuma K. Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys. Mater Sci Eng A. 2002;333:106–14.

    Article  Google Scholar 

  10. Palcut M, Sopousek J, Trnkova L, Hodulova E, Szewczykova B, Ozvold M, Turna M, Janovec J. Thermal analysis of selected tin-based lead-free solder alloys. Kovove Mater. 2009;47:43–50.

    CAS  Google Scholar 

  11. Mookam N, Kanlayasiri K. Effect of soldering condition on formation of intermetallic phases developed between Sn–0.3Ag–0.7Cu low-silver lead-free solder and Cu substrate. J Alloys Compd. 2011;509:6276–9.

    Article  CAS  Google Scholar 

  12. Fima P, Gazda A. Thermal analysis of selected Sn–Ag–Cu alloys. J Therm Anal Calorim. 2013;112:731–7.

    Article  CAS  Google Scholar 

  13. Chriastelova J, Trnkova LR, Dimova KP, Ozvold M. Reaction of liquid Sn–Ag–Cu–Ce solders with solid copper. J Electron Mater. 2011;40:1956–61.

    Article  CAS  Google Scholar 

  14. Drienovsky M, Trnkova LR, Martinkovic M, Ozvold M, Cernickova I, Palcut M, Janovec J. Influence of cerium addition on microstructure and properties of Sn–Cu–(Ag) solder alloys. Mater Sci Eng A. 2015;623:83–91.

    Article  CAS  Google Scholar 

  15. Lee H-T, Chen Y-F, Schwedt A, Mayer J. Effect of La addition on adhesive strength and fracture behavior of Sn–3.5Ag solder joints. Mater Sci Eng. 2011;A528:3630–8.

    Article  CAS  Google Scholar 

  16. Zeng G, Xue S, Gao L, Zhang L, Hu Y, Lai Z. Interfacial microstructure and properties of Sn–0.7Cu–0.05 Ni/Cu solder joint with rare earth Nd addition. J Alloys Compd. 2011;509:7152–61.

    Article  CAS  Google Scholar 

  17. Konings RJM, Benes O, Kovacs A, Manara D, Sedmidubsky D, Gorokhov L, Iorish VS, Yungman V, Shenyavskaya E, Osina E. The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides. J Phys Chem Ref Data. 2014;43(2014):11–3.

    Google Scholar 

  18. Wang J-X, Xue S-B, Han Z-J, Yu S-L, Chen Y, Shi Y-P, Wang H. Effects of rare earth Ce on microstructures, solderability of Sn–Ag–Cu and Sn–Cu–Ni solders as well as mechanical properties of soldered joints. J Alloys Compd. 2009;467:219–26.

    Article  CAS  Google Scholar 

  19. Zhang L, Xue S-B, Gao L-L, Sheng Z, Yu S-L, Chen Y, Dai W, Ji F, Guang Z. Reliability study of Sn–Ag–Cu–Ce soldered joints in quad flat packages. Microelectron Reliab. 2010;50:2071–7.

    Article  CAS  Google Scholar 

  20. Zhang L, Xue S-B, Gao L-L, Dai W, Ji F, Chen Y, Yu S-L. Microstructure characterization of SnAgCu solder bearing Ce for electronic packaging. Microelectron Eng. 2011;88:2848–51.

    Article  CAS  Google Scholar 

  21. Lin H-J, Chuang T-H. Effects of Ce and Zn additions on the microstructure and mechanical properties of Sn–3Ag–0.5Cu solder joints. J Alloys Compd. 2010;500:167–74.

    Article  CAS  Google Scholar 

  22. Zhang L, Xue SB, Zeng G, Gao LL, Ye H. Interface reaction between SnAgCu/SnAgCuCe solders and Cu substrate subjected to thermal cycling and isothermal aging. J Alloys Compd. 2012;510:38–45.

    Article  CAS  Google Scholar 

  23. Li J, Tao X, Dong S, Yang F, Liu H, Jin Z, Zheng F. Thermodynamic assessment of Sn–Cu–Ce system. CALPHAD. 2013;43:124–32.

    Article  CAS  Google Scholar 

  24. Dong HQ, Tao XM, Laurila T, Vuorinen V, Paulasto-Krockel M. Thermodynamic modeling of Au–Ce–Sn ternary system. CALPHAD. 2013;42:38–50.

    Article  CAS  Google Scholar 

  25. http://periodictable.com/Elements/050/data.html. Accessed 5 Feb 2016.

  26. Chuang T-H. Rapid whisker growth on the surface of Sn–3Ag–0.5Cu–1.0Ce solder joints. Scr Mater. 2006;55:983–6.

    Article  CAS  Google Scholar 

  27. Rycerz L. Practical remarks concerning phase diagrams determination on the basis of differential scanning calorimetry measurements. J Therm Anal Calorim. 2013;113:231–8.

    Article  CAS  Google Scholar 

  28. Zinkevich M, Djurovic D, Aldinger F. Thermodynamic modelling of the cerium–oxygen system. Solid State Ion. 2006;177:989–1001.

    Article  CAS  Google Scholar 

  29. Yuan D-W, Yan R-F, Simkovich G. Rapid oxidation of liquid tin and its alloys at 600–800°C. J Mater Sci. 1999;34:2911–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is the result of the project implementation: Centre of excellence for development and application of advanced diagnostic methods in processing of metallic and nonmetallic materials, ITMS:26220120048, supported by the Research and Development Operational Programme funded by the European regional development fund. The authors would also like to acknowledge the Project No. 1/0068/14 funded by the Grant Agency VEGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Drienovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drienovsky, M., Trnkova, L.R., Ozvold, M. et al. Melting behavior and oxidation resistance of Ce–Sn alloy designed for lead-free solder manufacturing. J Therm Anal Calorim 125, 1009–1015 (2016). https://doi.org/10.1007/s10973-016-5482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5482-y

Keywords

Navigation