Skip to main content
Log in

Prediction of decomposition onset temperature and heat of decomposition of organic peroxides using simple approaches

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Decomposition onset temperature and heat of decomposition are two important parameters for assessment of thermal stability of an energetic compound. This study presents two new correlations for predicting decomposition onset temperature and heat of decomposition of organic peroxides through their molecular structures. For 33 organic peroxides with different molecular structures, the new model for decomposition onset temperature gives the root-mean-square (rms) and the average absolute (σ) deviations 6.06 and 5.18 °C, respectively. The values of rms and σ deviations for heat of decomposition are also 146.41 and 118.19 J g−1, respectively. The proposed new models give good predictions for further eight organic peroxides containing complex molecular structures. The predicted results have also given more reliable results as compared to two of the best available methods, which are based on complex quantum mechanical parameters. High reliability of the new methods has been confirmed statistically by internal and external validation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Klapötke TM. Chemistry of high-energy materials. 3rd ed. Berlin: De Gruyter; 2015.

    Book  Google Scholar 

  2. Agrawal JP. High energy materials: propellants, explosives and pyrotechnics. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2010.

    Book  Google Scholar 

  3. Pilar R, Pachman J, Matyáš R, Honcová P, Honc D. Comparison of heat capacity of solid explosives by DSC and group contribution methods. J Therm Anal Calorim. 2015;121(2):683–9.

    Article  CAS  Google Scholar 

  4. Pourmortazavi SM, Sadri M, Rahimi-Nasrabadi M, Shamsipur M, Jabbarzade Y, Khalaki MS, et al. Thermal decomposition kinetics of electrospun azidodeoxy cellulose nitrate and polyurethane nanofibers. J Therm Anal Calorim. 2015;119(1):281–90.

    Article  CAS  Google Scholar 

  5. Pouretedal H, Ravanbod M. Kinetic study of ignition of Mg/NaNO3 pyrotechnic using non-isothermal TG/DSC technique. J Therm Anal Calorim. 2015;119(3):2281–8.

    Article  CAS  Google Scholar 

  6. Yan QL, Zeman S. Theoretical evaluation of sensitivity and thermal stability for high explosives based on quantum chemistry methods: a brief review. Int J Quantum Chem. 2013;113(8):1049–61.

    Article  CAS  Google Scholar 

  7. Badgujar D, Talawar M, Asthana S, Mahulikar P. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151(2):289–305.

    Article  CAS  Google Scholar 

  8. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B, et al. Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater. 2009;161(2):589–607.

    Article  CAS  Google Scholar 

  9. Keshavarz MH, Moradi S, Saatluo BE, Rahimi H, Madram AR. A simple accurate model for prediction of deflagration temperature of energetic compounds. J Therm Anal Calorim. 2013;112(3):1453–63.

    Article  CAS  Google Scholar 

  10. Keshavarz MH, Ghani K, Asgari A. A new method for predicting heats of decomposition of nitroaromatics. Zeitschrift für anorganische und allgemeine Chemie. 2015;641(10):1818–23.

    Article  CAS  Google Scholar 

  11. Keshavarz MH, Ghani K, Asgari A. A suitable computer code for prediction of sublimation energy and deflagration temperature of energetic materials. J Therm Anal Calorim. 2015;121(2):675–81.

    Article  CAS  Google Scholar 

  12. Keshavarz MH, Motamedoshariati H, Moghayadnia R, Ghanbarzadeh M, Azarniamehraban J. A new computer code for assessment of energetic materials with crystal density, condensed phase enthalpy of formation, and activation energy of thermolysis. Propellants Explos Pyrotech. 2013;38(1):95–102.

    Article  CAS  Google Scholar 

  13. Chen ZX, Xiao HM. Quantum chemistry derived criteria for impact sensitivity. Propellants Explos Pyrotech. 2014;39(4):487–95.

    Article  CAS  Google Scholar 

  14. Fang-qiang Y, Cong-zhong C, Shuai Z. Prediction of impact sensitivity of nitro energetic compounds by using structural parameters. Explos Shock Waves. 2013;1:012.

    Google Scholar 

  15. Fayet G, Rotureau P. Development of simple QSPR models for the impact sensitivity of nitramines. J Loss Prev Process Ind. 2014;30:1–8.

    Article  CAS  Google Scholar 

  16. Keshavarz MH. A new general correlation for predicting impact sensitivity of energetic compounds. Propellants Explos Pyrotech. 2013;38(6):754–60.

    Article  CAS  Google Scholar 

  17. Keshavarz MH, Motamedoshariati H, Pouretedal HR, Tehrani MK, Semnani A. Prediction of shock sensitivity of explosives based on small-scale gap test. J Hazard Mater. 2007;145(1):109–12.

    Article  CAS  Google Scholar 

  18. Keshavarz MH, Hayati M, Ghariban-Lavasani S, Zohari N. A new method for predicting the friction sensitivity of nitramines. Central Eur J Energ Mater. 2015;12(2):215–27.

    Google Scholar 

  19. Wang R, Sun L, Kang Q, Li Z. Predicting the electric spark sensitivity of nitramines from molecular structures via support vector machine. J Loss Prev Process Ind. 2013;26(6):1193–7.

    Article  Google Scholar 

  20. Keshavarz MH. Theoretical prediction of electric spark sensitivity of nitroaromatic energetic compounds based on molecular structure. J Hazard Mater. 2008;153(1):201–6.

    Article  CAS  Google Scholar 

  21. Zohari N, Keshavarz MH, Seyedsadjadi SA. A link between impact sensitivity of energetic compounds and their activation energies of thermal decomposition. J Therm Anal Calorim. 2014;117(1):423–32.

    Article  CAS  Google Scholar 

  22. Zohari N, Keshavarz MH, Seyedsadjadi SA. A novel method for risk assessment of electrostatic sensitivity of nitroaromatics through their activation energies of thermal decomposition. J Therm Anal Calorim. 2014;115(1):93–100.

    Article  CAS  Google Scholar 

  23. Keshavarz MH, Zohari N, Seyedsadjadi SA. Relationship between electric spark sensitivity and activation energy of the thermal decomposition of nitramines for safety measures in industrial processes. J Loss Prev Process Ind. 2013;26(6):1452–6.

    Article  CAS  Google Scholar 

  24. Keshavarz MH, Hayati M, Ghariban-Lavasani S, Zohari N. Relationship between activation energy of thermolysis and friction sensitivity of cyclic and acyclic nitramines. Zeitschrift für anorganische und allgemeine Chemie. 2016;642(2):182–8.

    Article  CAS  Google Scholar 

  25. Matyáš R, Pachman J. Organic peroxides. In: Primary explosives. Berlin: Springer; 2013. p. 255–87.

  26. Benassi R, Folli U, Sbardellati S, Taddei F. Conformational properties and homolytic bond cleavage of organic peroxides. I. An empirical approach based upon molecular mechanics and ab initio calculations. J Comput Chem. 1993;14(4):379–91.

    Article  CAS  Google Scholar 

  27. Smith MB, March J. March’s advanced organic chemistry: reactions, mechanisms, and structure. Berlin: Wiley; 2007.

    Google Scholar 

  28. Benassi R, Taddei F. Homolytic bond-dissociation in peroxides, peroxyacids, peroxyesters and related radicals: ab initio MO calculations. Tetrahedron. 1994;50(16):4795–810.

    Article  CAS  Google Scholar 

  29. Chang R, Tseng J, Jehng J, Shu C, Hou H. Thermokinetic model simulations for methyl ethyl ketone peroxide contaminated with H2SO4 or NaOH by DSC and VSP2. J Therm Anal Calorim. 2006;83(1):57–62.

    Article  CAS  Google Scholar 

  30. Tsai L-C, You M-L, Ding M-F, Shu C-M. Thermal hazard evaluation of lauroyl peroxide mixed with nitric acid. Molecules. 2012;17(7):8056–67.

    Article  CAS  Google Scholar 

  31. CSB, HI. Improving reactive hazard management. Washington, DC: US Chemical Safety and Hazard Investigation Board; 2002.

    Google Scholar 

  32. Ho TC, Duh YS, Chen J. Case studies of incidents in runaway reactions and emergency relief. Process Saf Prog. 1998;17(4):259–62.

    Article  CAS  Google Scholar 

  33. Kletz TA. Fires and explosions of hydrocarbon oxidation plants. Plant/Oper Prog. 1988;7(4):226–30.

    Article  CAS  Google Scholar 

  34. Martin JJ. SAFETY—tert-Butyl peracetate—an explosive compound. Ind Eng Chem. 1960;52(4):65A–8A.

    CAS  Google Scholar 

  35. Wakakura M, Iiduka Y. Trends in chemical hazards in Japan. J Loss Prev Process Ind. 1999;12(1):79–84.

    Article  Google Scholar 

  36. Noller D, Mazurowski S, Linden G, De Leeuw F, Mageli O. A relative hazard classification of organic peroxides. Ind Eng Chem. 1964;56(12):18–27.

    Article  CAS  Google Scholar 

  37. Gao Y, Xue Y, Lǚ Z-g, Wang Z, Chen Q, Shi N, et al. Self-accelerating decomposition temperature and quantitative structure–property relationship of organic peroxides. Process Saf Environ Prot. 2015;94:322–8.

    Article  CAS  Google Scholar 

  38. Lu Y, Ng D, Mannan MS. Prediction of the reactivity hazards for organic peroxides using the QSPR approach. Ind Eng Chem Res. 2010;50(3):1515–22.

    Article  Google Scholar 

  39. Pan Y, Zhang Y, Jiang J, Ding L. Prediction of the self-accelerating decomposition temperature of organic peroxides using the quantitative structure–property relationship (QSPR) approach. J Loss Prev Process Ind. 2014;31:41–9.

    Article  CAS  Google Scholar 

  40. Prana V, Rotureau P, Fayet G, André D, Hub S, Vicot P, et al. Prediction of the thermal decomposition of organic peroxides by validated QSPR models. J Hazard Mater. 2014;276:216–24.

    Article  CAS  Google Scholar 

  41. Her B, Jones A, Wollack JW. A three-step synthesis of benzoyl peroxide. J Chem Educ. 2014;91(9):1491–4.

    Article  CAS  Google Scholar 

  42. Li X-R, Koseki H. Thermal decomposition kinetic of liquid organic peroxides. J Loss Prev Process Ind. 2005;18(4):460–4.

    Article  Google Scholar 

  43. Malow M, Wehrstedt K. Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements. J Hazard Mater. 2005;120(1):21–4.

    Article  CAS  Google Scholar 

  44. Saraf S, Rogers W, Mannan MS. Prediction of reactive hazards based on molecular structure. J Hazard Mater. 2003;98(1):15–29.

    Article  CAS  Google Scholar 

  45. Pourmortazavi SM, Rahimi-Nasrabadi M, Kohsari I, Hajimirsadeghi SS. Non-isothermal kinetic studies on thermal decomposition of energetic materials: KNF and NTO. J Therm Anal Calorim. 2011;110(2):857–63.

    Article  Google Scholar 

  46. Keshavarz MH, Zohari N, Seyedsadjadi SA. Validation of improved simple method for prediction of activation energy of the thermal decomposition of energetic compounds. J Therm Anal Calorim. 2013;114(2):497–510.

    Article  CAS  Google Scholar 

  47. Pandele Cusu J, Musuc AM, Matache M, Oancea D. Kinetics of exothermal decomposition of some. J Therm Anal Calorim. 2011;110(3):1259–66.

    Article  Google Scholar 

  48. Krabbendam-LaHaye E, De Klerk W, Krämer R. The kinetic behaviour and thermal stability of commercially available explosives. J Therm Anal Calorim. 2005;80(2):495–501.

    Article  CAS  Google Scholar 

  49. Bunyan P, Baker C, Turner N. Application of heat conduction calorimetry to high explosives. Thermochim Acta. 2003;401(1):9–16.

    Article  CAS  Google Scholar 

  50. Keshavarz MH. Simple method for prediction of activation energies of the thermal decomposition of nitramines. J Hazard Mater. 2009;162(2):1557–62.

    Article  CAS  Google Scholar 

  51. Keshavarz MH, Pouretedal HR, Shokrolahi A, Zali A, Semnani A. Predicting activation energy of thermolysis of polynitro arenes through molecular structure. J Hazard Mater. 2008;160(1):142–7.

    Article  CAS  Google Scholar 

  52. Keshavarz M. A new method to predict activation energies of nitroparaffins. Indian J Eng Mater Sci. 2009;16(6):429.

    Google Scholar 

  53. Gharagheizi F, Sattari M, Ilani-Kashkouli P, Mohammadi AH, Ramjugernath D, Richon D. Quantitative structure—property relationship for thermal decomposition temperature of ionic liquids. Chem Eng Sci. 2012;84:557–63.

    Article  CAS  Google Scholar 

  54. Zhang Q. Shreeve JnM. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem Rev. 2014;114(20):10527–74.

    Article  CAS  Google Scholar 

  55. Wang Q, Wang J, Larranaga MD. Simple relationship for predicting onset temperatures of nitro compounds in thermal explosions. J Therm Anal Calorim. 2013;111(2):1033–7.

    Article  CAS  Google Scholar 

  56. Keshavarz M, Pouretedal H, Semnani A. Relationship between thermal stability and molecular structure of polynitro arenes. Indian J Eng Mater Sci. 2009;16(1):61.

    CAS  Google Scholar 

  57. Yang T, Chen L, Chen W, Zhou Y, Gao H, Zhong T. Thermal stability of 2-ethylhexyl nitrate with acid. J Therm Anal Calorim. 2015;119(1):205–12.

    Article  CAS  Google Scholar 

  58. Xing X, Zhao S, Huang W, Li W, Zhang W, Diao X, et al. Thermal decomposition behavior of hexanitrohexaazaisowurtzitane and its blending with BTATz (expand) and Al by microcalorimetry. J Therm Anal Calorim. 2015;120(2):1393–7.

    Article  CAS  Google Scholar 

  59. Pilar R, Pachman J, Matyáš R, Honcová P, Honc D. Comparison of heat capacity of solid explosives by DSC and group contribution methods. J Therm Anal Calorim. 2015;121(2):683–9.

    Article  CAS  Google Scholar 

  60. Xiao L-B, Zhao F-Q, Luo Y, Gao H-X, Li N, Meng Z-H et al. Thermal behavior and safety of 4, 10-dinitro-2, 6, 8, 12-tetraoxa-4, 10-diazaisowutrzitane. J Therm Anal Calorim. 2015;121(2):839–42.

    Article  CAS  Google Scholar 

  61. Huang H, Shi Y, Yang J. Thermal characterization of the promising energetic material TKX-50. J Therm Anal Calorim. 2015;121(2):705–9.

    Article  CAS  Google Scholar 

  62. Künzel M, Yan Q-L, Šelešovský J, Zeman S, Matyáš R. Thermal behavior and decomposition kinetics of ETN and its mixtures with PETN and RDX. J Therm Anal Calorim. 2014;115(1):289–99.

    Article  Google Scholar 

  63. Fischer D, Klapötke TM, Stierstorfer J. Oxalylhydrazinium nitrate and dinitrate—efficiency meets performance. J Energ Mater. 2014;32(1):37–49.

    Article  CAS  Google Scholar 

  64. Klapötke TM. Chemistry of high-energy materials. Berlin: Walter de Gruyter; 2012.

    Book  Google Scholar 

  65. Agrawal JP, Hodgson R. Organic chemistry of explosives. Chichester: Wiley; 2007.

    Google Scholar 

  66. Felix SP, Singh G, Sikder A, Aggrawal J. Studies on energetic compounds: Part 33: thermolysis of keto-RDX and its plastic bonded explosives containing thermally stable polymers. Thermochim Acta. 2005;426(1):53–60.

    Article  CAS  Google Scholar 

  67. Sikder A, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater. 2004;112(1):1–15.

    Article  CAS  Google Scholar 

  68. Talawar M, Jangid S, Nath T, Sinha R, Asthana S. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives: Emerging trends. J Hazard Mater. 2015;300:307–21.

    Article  CAS  Google Scholar 

  69. Palm WJ. Introduction to MATLAB 7 for engineers. New York: McGraw-Hill; 2005.

    Google Scholar 

  70. Khozani MH, Keshavarz MH, Nazari B, Mohebbi M. Simple approach for prediction of melting points of organic molecules containing hazardous peroxide bonds. J Iran Chem Soc. 2015;12(4):587–98.

    Article  CAS  Google Scholar 

  71. Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb Sci. 2007;26(5):694.

    Article  CAS  Google Scholar 

  72. Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inf. 2010;29(6–7):476–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the research committee of Malek-Ashtar University of Technology (MUT) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Narges Zohari or Mohammad Hossein Keshavarz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohari, N., Keshavarz, M.H. & Dalaei, Z. Prediction of decomposition onset temperature and heat of decomposition of organic peroxides using simple approaches. J Therm Anal Calorim 125, 887–896 (2016). https://doi.org/10.1007/s10973-016-5451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5451-5

Keywords

Navigation