Skip to main content
Log in

Estimation of thermal decomposition temperatures of organic peroxides by means of novel local and global descriptors

利用新颖的局部及全局分子描述符估算有机过氧化物的热分解温度

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal decomposition temperatures of organic peroxides. The entire set of 38 organic peroxides was at random divided into a training set for model development and a prediction set for external model validation. The novel local molecular descriptors of AT1, AT2, AT3, AT4, AT5, AT6 and global molecular descriptor of ATC have been proposed in order to character organic peroxides’ molecular structures. An accurate quantitative structure-property relationship (QSPR) equation is developed for the thermal decomposition temperatures of organic peroxides. The statistical results showed that the QSPR model was obtained using the multiple linear regression (MLR) method with correlation coefficient (R), standard deviation (S), leave-one-out validation correlation coefficient (RCV) values of 0.9795, 6.5676 °C and 0.9328, respectively. The average absolute relative deviation (AARD) is only 3.86% for the experimental values. Model test by internal leave-one-out cross validation and external validation and molecular descriptor interpretation were discussed. Comparison with literature results demonstrated that novel local and global descriptors were useful molecular descriptors for predicting the thermal decomposition temperatures of organic peroxides.

摘要

热分解温度是评估有机过氧化物火灾危险程度最重要的参数之一。本文提出一种估算有机过氧 化物热分解温度的定量新方法。38 种有机过氧化物被随机分为训练集和测试集, 分子局部描述符AT1, AT2, AT3, AT4, AT5, AT6 和全局描述符ATC 表征分子结构特征。建立了一个准确的估算有机过氧化物热 分解温度的定量构效关系模型, 多元线性关系模型的相关系数、标准偏差和留一法检验的相关系数分 别为0.9795, 6.5676 °C 和 0.9328, 预测结果的平均相对误差仅为3.86%。模型稳定性采用留一法和外 检验进行验证, 分子结构参数对有机过氧化物的热分解温度的影响进行合理的解释。与相关文献结果 比较表明利用分子局部描述符AT1, AT2, AT3, AT4, AT5, AT6 和全局描述符ATC 建立定量构效关系方法估 算有机过氧化物的热分解温度是一种有效的方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HERBERT K, PETER H G., RAINER S, WILFIRED M. Peroxy compounds, organic in Ullmann’s encyclopedia of industrial chemistry [M]. New York: Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  2. SANCHEZ J, MYERS T. Peroxides and peroxide compounds organic peroxides [M]//Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed, New York: John Wiley & Sons, 1996: 230–310.

    Google Scholar 

  3. ZHANG W, XIAO J, WANG X, MIAO G, YE F Y, LI Z. Oxidative desulfurization using in-situ-generated peroxides in diesel by light irradiation [J]. Energy Fuels, 2014, 28: 5339–5344.

    Article  Google Scholar 

  4. SAULE M, MOINE L, DEGUEIL-CASTAING M, MAILLARD B. Chemical modification of polypropylene by decomposition of unsaturated peroxides [J]. Macromolecules, 2005, 38: 77–85.

    Article  Google Scholar 

  5. TOMMASO S D I, ROTUREAU P, CRESCENZI O, ADAMO C. Oxidation mechanism of diethyl ether: A complex process for a simple molecule [J]. Phys Chem Chem Phys, 2011, 13: 14636–14645.

    Article  Google Scholar 

  6. BENASSI R, TADDEI F. Homolytic bond-dissociation in peroxides, peroxyacids, peroxyesters and related radicals: ab-initio MO calculations [J]. Tetrahedron, 1994, 50: 4795–4810.

    Article  Google Scholar 

  7. SHEN S J, WU S H, CHI J H, WANG Y W, SHU C M. Thermal explosion simulation and incompatible reaction of dicumyl peroxide by calorimetric technique [J]. J Therm Anal Calorim, 2010, 102: 569–577.

    Article  Google Scholar 

  8. CSB. Improving reactive hazard management [R]. Washington, DC, 2002.

    Google Scholar 

  9. HSU J M, SU M S, HUANG C Y, DUH Y S. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO [J]. J Hazard Mater, 2012, 217–218: 19–28.

    Article  Google Scholar 

  10. TSENG J M, LIN C P. Green thermal analysis technology for evaluating the thermal hazard of di-tert-butyl peroxide [J]. Ind Eng Chem Res, 2011, 50: 9487–9494.

    Article  Google Scholar 

  11. SWIHART M T, GIRSHICK S L. Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane [J]. J Phys Chem B, 1998, 103: 64–76.

    Article  Google Scholar 

  12. DUH Y S, WU X H, KAO C S. Hazard ratings for organic peroxides [J]. Proc Safety Prog, 2008, 27: 89–99.

    Article  Google Scholar 

  13. LV J Y, CHEN W H, CHEN L P, TIAN Y T, YAN J J. Thermal risk evaluation on decomposition processes for four organic peroxides [J]. Thermochim Acta, 2004, 589: 11–18.

    Article  Google Scholar 

  14. VIDAL M, ROGERS W J, HOLSTE J C, MANNAN M S. A review of estimation methods for flash points and flammability limits [J]. Proc Safety Prog, 2004, 23: 47–55.

    Article  Google Scholar 

  15. WANG Q, WANG L, ZHANG X, MI Z. Thermal stability and kinetic of decomposition of nitrated HTPB [J]. J Hazard Mater, 2009, 172: 1659–1664.

    Article  Google Scholar 

  16. LV J, CHEN L, CHEN W, GAO H, PENG M. Kinetic analysis and self-accelerating decomposition temperature of dicumyl peroxide [J]. Thermochim Acta, 2013, 571: 60–63.

    Article  Google Scholar 

  17. YEH P Y, SHU C M, DUH Y S. Thermal hazard analysis of methyl ethyl ketone peroxide [J]. Ind Eng Chem Res, 2002, 42: 1–5.

    Article  Google Scholar 

  18. MALOW M, WEHRSTEDT K D. Prediction of the self-accelerating decomposition temperature for liquid organic peroxides from differential scanning calorimetry (DSC) measurements [J]. J Hazard Mater, 2005, 120: 21–24.

    Article  Google Scholar 

  19. ALBAHRI T A. Flammability characteristics of pure hydrocarbons [J]. Chem Eng Sci, 2003, 58: 3629–3641.

    Article  Google Scholar 

  20. PRANA V, ROTUREAU P, FAYET G, ANDRE D, HUB S, VICOT P, RAO L, ADAMO C. Prediction of the thermal decomposition of organic peroxides by validated QSPR models [J]. J Hazard Mater, 2014, 276: 216–224.

    Article  Google Scholar 

  21. LU Y, NG D, MANNAN M S. Prediction of the reactivity hazards for organic peroxides using QSPR approach [J]. Ind Eng Chem Res, 2011, 50: 1515–1522.

    Article  Google Scholar 

  22. ASTM Computer Program for Chemical Thermodynamic and Energy Release Evaluation-CHETAH [EB/OL. [2014–01]. https://doi.org/www.astm.org.

  23. MOHAN V K, BECKER K R, HAY J E. Hazard evaluation of organic peroxides [J]. J Hazard Mater, 1982, 5: 197–220

    Article  Google Scholar 

  24. GHARAGHEIZI F, SATTARI M, ILANI-KASHKOULI P, MOHAMMADI A H, RAMJUGERNATH D, RICHON D. Quantitative structure-property relationship for thermal decomposition temperature of ionic liquids [J]. Chem Eng Sci, 2012, 84: 557–563.

    Article  Google Scholar 

  25. PAN Y, ZHANG Y Y, JIANG J C, DING L. Prediction of the self-accelerating decomposition temperature of organic peroxides using the quantitative structure-property relationship (QSPR) approach [J]. J Loss Prev Process Ind, 2014, 31: 41–49.

    Article  Google Scholar 

  26. KATRITZKY A R, KUANAR M, SLAVOV S, HALL C D, KARELSON M, KAHN I, DOBCHEV D A. Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction [J]. Chem Rev, 2010, 110: 5714–5789.

    Article  Google Scholar 

  27. TROPSHA A, GOLBRAIKH A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening [J]. Curr Pharm Des, 2007, 13: 3494–3504.

    Article  Google Scholar 

  28. GHARAGHEIZI F, ESLAMIMANESH A, MOHAMMADI A H, RICHON D. QSPR approach for determination of parachor of non-electrolyte organic compounds [J]. Chem Eng Sci, 2011, 66: 2959–2967.

    Article  Google Scholar 

  29. DAI Y M, LIU H, LI X, ZHU Z P, ZHANG Y F, CAO Z, ZHU L X, ZHOU Y. A novel group contribution-based method for estimation of flash points of ester compounds [J]. Chemom Intell Lab Syst, 2014, 136: 138–146.

    Article  Google Scholar 

  30. JIN L J, BAI P. Prediction of the normal boiling point of oxygen containing organic compounds using quantitative structure-property relationship strategy [J]. Fluid Phase Equilibria, 2016, 427: 194–201.

    Article  Google Scholar 

  31. XU J, WANG L, WANG L X, LIANG G J, SHEN X L, XU W L. Prediction of Setschenow constants of organic compounds based on a 3D structure representation [J]. Chemom Intell Lab Syst, 2011, 107: 178–184.

    Article  Google Scholar 

  32. VENKATRAMAN V, ALSBERG B K. Quantitative structure-property relationship modeling of thermal decomposition temperatures of ionic liquids [J]. J Mol Liq, 2016, 223: 60–67.

    Article  Google Scholar 

  33. ASTM E537-02. Standard Test Method for the Thermal Stability of Chemicals by Differential Scanning Calorimetry [S].

  34. DAI Y M, ZHU Z P, CAO Z, ZHANG Y F, LI X. Prediction of boiling points of organic compounds by QSPR tools [J]. J Mol Graphics Model, 2013, 44: 113–119.

    Article  Google Scholar 

  35. DAI Y M, LIU H, NIU L L, CHEN C, CHEN X Q, LIU Y N. Estimation of half-wave potential of anabolic androgenic steroids by means of QSER approach [J]. Journal of Central South University, 2016, 23: 1906–1914.

    Article  Google Scholar 

  36. ZHOU C, CHU X, NIE C. Predicting thermodynamic properties with a novel semi-empirical topological descriptor and path numbers [J]. J Phy Chem B, 2007, 111: 10174–10179.

    Article  Google Scholar 

  37. DUCHOWICZ P R, CASTRO E A, FERNÁ NDEZ F M, GONZALEZ M P. A new search algorithm for QSPR/QSAR theories: Normal boiling points of some organic molecules [J]. Chem Phys Lett, 2005, 412: 376–380.

    Article  Google Scholar 

  38. ROY K, CHAKRABORTY P, MITRA I, OJHA P K, KAR S, DAS R N. Some case studies on application of “r2m” metrics for judging quality of quantitative structure activity relationship predictions: Emphasis on scaling of response data [J]. J Comput Chem, 2013, 34: 1071–1082.

    Article  Google Scholar 

  39. DAI Yi, LIU You, LI Xun, CAO Zhong, ZHU Zhi, YANG Dao. Estimation of surface tension of organic compounds using QSPR [J]. Journal of Central South University, 2012, 19(1): 93–100.

    Article  Google Scholar 

  40. JIN L J, BAI P. QSPR study on normal boiling point of acyclic oxygen containing organic compounds by radial basis function artificial neural network [J]. Chemom Intell Lab Syst, 2016, 157: 127–132.

    Article  Google Scholar 

  41. DAI Yi, HUANG Ke, LI Xun, CAO Zhong, ZHU Zhi, YANG Dao. Simulation of 13C NMR chemical shifts of carbinol carbon atoms by using quantitative structure-spectrum relationships [J]. Journal of Central South University of Technology, 2011, 18(2): 323–340.

    Article  Google Scholar 

  42. SHI J J, CHEN L P, CHEN W H, SHI N, YANG H, XU W. Prediction of the thermal conductivity of organic compounds using heuristic and support vector machine methods [J]. Acta Phys Chem Sina, 2012, 28: 2790–2796.

    Google Scholar 

  43. PAN Y, JIANG J C, WANG R, CAO H Y, CUI Y. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine [J]. J Hazard Mater, 2009, 168: 962–969.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-min Dai  (戴益民).

Additional information

Foundation item: Project(2015SK20823) supported by Science and Technology Project of Hunan Province, China; Project(15A001) supported by Scientific Research Fund of Hunan Provincial Education Department, China; Project(2017CL06) supported by Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, China; Project(k1403029-11) supported by Science and Technology Project of Changsha City, China; Project(CX2015B372) supported by the Hunan Provincial Innovation Foundation for Postgraduate, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Ym., Niu, Ll., Zou, Jq. et al. Estimation of thermal decomposition temperatures of organic peroxides by means of novel local and global descriptors. J. Cent. South Univ. 25, 1535–1544 (2018). https://doi.org/10.1007/s11771-018-3846-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3846-0

Key words

关键词

Navigation