Skip to main content
Log in

The properties of ethylene–propylene elastomers obtained with the use of a new cross-linking substance

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the effect of a new filler on cross-linking of ethylene–propylene rubber (EPM) was investigated. A filler with a core–shell structure ZnO/SiO2 (precipitated silica modified with zinc oxide) was introduced into rubber compounds. It was proved using of those substance to cross-link EPM caused the formation of labile ionic clusters in elastomer network. These non-covalent cross-links were generated due to interactions occurring between metal ions and functional groups of rubber (namely carboxyl groups) introduced via rubber functionalization with maleic and itaconic acids derivatives. The optimal curing time of rubber compounds was investigated. The cross-link density of the vulcanizates obtained was studied by equilibrium swelling in solvents (e.g., toluene). Additionally, the results confirmed that vulcanizates received using modified silica contained specific cross-links disintegrating under ammonia vapors. Physical relaxation at ambient temperature confirmed the influence of non-covalent cross-links on stress dissipation in the vulcanizate. The static and dynamic mechanical properties of vulcanizates obtained were also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brostow W, Datashvili T, Hackenberg KP. Effect of different types of peroxides on properties of vulcanized EPDM + PP blends. Polym Compos. 2010. doi:10.1002/pc.20958.

    Google Scholar 

  2. van Duin M, Orza R, Chechik V. Mechanism of peroxide cross-linking of EPDM rubber. Macromol Symp. 2010. doi:10.1002/masy.201050508.

    Google Scholar 

  3. Głuszewski W, Zagórski ZP, Rajkiewicz M. Radiation physics and chemistry. Rad Phys Chem. 2014. doi:10.1016/j.radphyschem.2013.07.019.

    Google Scholar 

  4. Lenko D, Schlogl S, Temel A, Schaller R, Holzner A, Kern W. Dual crosslinking of carboxylated nitrile butadiene rubber latex employing the thiol-ene photoreaction. J Appl Polym Sci. 2013. doi:10.1002/app.38983.

    Google Scholar 

  5. Manaila E, Stelescu MD, Craciun G, Surdu L. Effects of benzoyl peroxide on some properties of composites based on hemp and natural rubber. Polym Bull. 2014. doi:10.1007/S00289-014-1168-4.

    Google Scholar 

  6. Maciejewska M, Zaborski M, Krzywania-Kaliszewska A. Mineral oxides and layered minerals in combination with itaconic acid as coagents for peroxide crosslinking of hydrogenated acrylonitrile-butadiene elastomer. C R Chimie. 2012;15:414. doi:10.1016/j.crci.2012.01.001.

    Article  CAS  Google Scholar 

  7. Vallat MF, Ruch F, David MO. A structural study of EPDM networks—the influence of the crosslinking mode on their microscopic structure. Eur. Polym. J. 2004. doi:10.1016/j.eurpolymj.2004.01.026.

    Google Scholar 

  8. López-Manchado MA, Valentin JL, Carretero J, Barroso F, Arroyo M. Rubber network in elastomer nanocomposites. Eur Polym J. 2007. doi:10.1016/j.eurpolymj.2007.07.023.

    Google Scholar 

  9. Ohbi DS, Purewal TS, Shah T, Siores E. Crosslinking reaction mechanism of diisopropyl xanthogen polysulfide accelerator in bromobutyl elastomer for medical device applications. J Appl Polym Sci. 2008. doi:10.1002/app.27618.

    Google Scholar 

  10. Alam N, Mandal SK, Debnath SC. Bis(N-benzyl piperazino) thiuram disulfide and dibenzothiazyl disulfide as synergistic safe accelerators in the vulcanization of natural rubber. J Appl Polym Sci. 2012. doi:10.1002/app.36874.

    Google Scholar 

  11. Przybyszewska M, Zaborski M, Jakubowski B, Zawadiak J. Zinc chelates as new activators for sulphur vulcanization of acrylonitrile-butadiene elastomer. Express Polym Lett. 2009. doi:10.3144/expresspolymlett.2009.32.

    Google Scholar 

  12. Rybiński P, Janowska G. Effect of the spatial network structure and cross-link density of diene rubbers on their thermal stability and fire hazard. J Therm Anal Calorim. 2014. doi:10.1007/s10973-014-3673-y.

    Google Scholar 

  13. Boochathum P, Prajudtake W. Vulcanization of cis- and trans- polyisoprene and their blends: cure characteristics and crosslink distribution. Eur Polym J. 2001. doi:10.1016/S0014-3057(00)00137-3.

    Google Scholar 

  14. Bhowmick AK, Stephens HL. Handbook of elastomers. New York: Marcel Dekker Inc.; 2001. p. 565–7.

    Google Scholar 

  15. Ibarra L, Alzorriz M. Ionic elastomers based on carboxylated nitrile rubber and magnesium oxide. J Appl Polym Sci. 2007. doi:10.1002/app.25411.

    Google Scholar 

  16. Ibarra L, Rodrigues A, Mora I. Ionic nanocomposites based on XNBR-OMg filled with layered nanoclays. Eur Polym J. 2007. doi:10.1016/j.eurpolymj.2006.12.007.

    Google Scholar 

  17. Ibarra L, Rodrigues A, Mora-Barrantes I. Crosslinking of carboxylated nitrile rubber (XNBR) induced by coordination with anhydrous copper sulfate. Polym Int. 2009. doi:10.1002/pi.2519.

    Google Scholar 

  18. Ibarra L, Rodrigues A, Mora-Barrantes I. Crosslinking of unfilled carboxylated nitrile rubber with different systems: influence on properties. J Appl Polym Sci. 2008. doi:10.1002/app.27893.

    Google Scholar 

  19. Tobolski AV, Lyons PF, Hata N. Ionic clusters in high-strength carboxylic rubbers. Macromolecules. 1968. doi:10.1021/ma60006a012.

    Google Scholar 

  20. Eisenberg A. Clustering of ions in organic polymers. A theoretical approach. Macromolecules. 1970. doi:10.1021/ma60014aoo6.

    Google Scholar 

  21. Mora-Barantes I, Malmierca MA, Valentin JL, Rodriguez A, Ibarra L. Effect of covalent cross-links on the network structure of thermo-reversible ionic elastomers. Soft Matter. 2012. doi:10.1039/c2sm06975j.

    Google Scholar 

  22. de Luca MA, Jacobi MM, Orlandini LF. Synthesis and characterisation of elastomeric composites prepared from epoxidised styrene butadiene rubber, 3-aminopropyltriethoxysilane and tetraethoxysilane. J Sol Gel Sci Technol. 2009. doi:10.1007/s10971-008-1851-8.

    Google Scholar 

  23. Chokanandsombad Y, Sirisinha C. MgO and ZnO as reinforcing fillers in cured polychloroprene rubber. J Appl Polym Sci. 2013. doi:10.1002/app.38579.

    Google Scholar 

  24. Przybyszewska M, Zaborski M. The effect of zinc oxide nanoparticle morphology on activity in crosslinking of carboxylated nitrile elastomer. Express Polym Lett. 2009. doi:10.3144/expresspolymlett.2009.68.

    Google Scholar 

  25. Gaca M, Zaborski M. The properties of elastomers obtained with the use of carboxylated acrylonitrile-butadiene rubber and new crosslinking substances. Polimery. 2016. doi:10.14314/polimery.2016.031.

    Google Scholar 

  26. Tachino H, Hara H, Hirasawa E, Kutsumizu S, Tadano K, Yano S. Dynamic mechanical relaxations of ethylene ionomers. Macromolecules. 1993. doi:10.1021/ma00056a029.

    Google Scholar 

  27. Mandal UK. Ionic elastomer based on carboxylated nitrile rubber: infrared spectral analysis. Polym Int. 2000. doi:10.1002/1097-0126(200012)49:12%3C1653:AID-PI586%3E3.0.CO;2-U.

    Google Scholar 

  28. Ibarra L, Marcos-Fernandez A, Alzorriz M. Mechanistic approach to the curing of carboxylated nitrile rubber (XNBR) by zinc peroxide/zinc oxide. Polymer. 2002. doi:10.1016/S0032-3861(01),00734-0.

    Google Scholar 

  29. Chatterjee K, Naskar K. Development of thermoplastic elastomers based on maleated ethylene propylene rubber (m-EPM) and polypropylene (PP) by dynamic vulcanization. Express Polym. Lett. 2007. doi:10.3144/expresspolymlett.2007.75.

    Google Scholar 

  30. Li Q, Zhao S, Pan Y. Structure, morphology, and properties of HNBR filled with N550, SiO2, ZDMA, and two of three kinds of fillers. J Appl Polym Sci. 2010. doi:10.1002/app.31744.

    Google Scholar 

  31. Wei Z, Lu Y, Yan S, Meng Y, Zhang L. Dramatic Influence of curing temperature on micro-nano structure transform of HNBR filled with zinc dimethacrylate. J Appl Polym Sci. 2012. doi:10.1002/app.34615.

    Google Scholar 

  32. Burlett DJ. Thermal techniques to study complex elastomer/filler systems. J Therm Anan Calorim. 2004. doi:10.1023/B:JTAN.0000027143.59565.5f.

    Google Scholar 

  33. Janowska G, Kucharska A. The influence of the method of butadiene rubbers crosslinking on their thermal properties. J Therm Anan Calor. 2009. doi:10.1007/s10973-008-9395-2.

    Google Scholar 

  34. Likozar B, Kranjc M. Influence of morphology on the dynamic mechanical properties of hydrogenated acrylonitrile butadiene elastomer/coagent nanodispersion. J Appl Polym Sci. 2008. doi:10.1002/app.28525.

    Google Scholar 

  35. Owczarek M, Zaborski M, Paryjczak T, Boiteux G, Gain O. New type of inorganic filler with a core-shell structure. Macromol Symp. 2003. doi:10.1002/masy200390098.

    Google Scholar 

  36. Owczarek M, Zaborski M. Chlorosulfonated polyethylene elastomers containing zinc oxide incorporated on SiO2. Kautsch Gummi Kunstst. 2004;57:218.

    CAS  Google Scholar 

  37. Owczarek M, Zaborski M. Chlorosulfonated polyethylene cross-linked with aminosilanes. Kautsch Gummi Kunstst. 2005;58:432.

    CAS  Google Scholar 

  38. Chen Y, Xu C. Crosslink network evolution of nature rubber/zinc dimethacrylate composite during peroxide vulcanization. Polym Compos. 2011. doi:10.1002/pc.21179.

    Google Scholar 

  39. Chen Y, Xu C. Stress-strain behaviors and crosslinked networks studies of natural rubber-zinc dimethacrylate composites. J Macromol Sci Part B. 2012. doi:10.1080/00222348.2011.629904.

    Google Scholar 

  40. Xu C, Chen Y, Zeng X. A study on the crosslink network evolution of magnesium dimethacrylate/natural rubber composite. J Appl Polym Sci. 2012. doi:10.1002/app.36346.

    Google Scholar 

  41. Henning S.K. The use of coagents in the radical cure of elastomers. Rubber World 2008, Aug., 35.

  42. Ansarifar A, Wang L, Ellis RJ, Haile-Meskel Y. Using a silanized silica nanofiller to reduce excessive amount of rubber curatives in styrene-butadiene rubber. J Appl Polym Sci. 2011. doi:10.1002/app32772.

    Google Scholar 

  43. Magg H. Crosslinking of carboxylated nitrile rubber with resol resins. Gummi Fasern Kunstst. 2013;6:368.

    Google Scholar 

  44. Fuchs E, Reinartz KS. Improvement of the crosslinking of polychloroprene. Kautsch Gummi Kunstst. 2000;53:419.

    CAS  Google Scholar 

  45. Zaborski M, Owczarek M, Paryjczak T, Każmierczak A. Właściwości karboksylowanego kauczuku butadienowo-akrylonitrylowego usieciowanego za pomocą układu ZnO/SiO2. Polimery. 2002;47:339.

    CAS  Google Scholar 

  46. Mahaling RN, Kumar S, Rath T, Das CK. Effects of rubber filler interaction on the developments of physical, mechanical, and interfacial properties of vamac silica nano-composites. J Elastomers Plast. 2007. doi:10.1177/0095244307076495.

    Google Scholar 

  47. Zaborski M, Paryjczak T, Kaźmierczak A, Albińska J. Charakterystyka fizykochemicznych właściwości nieorganicznych składników mieszanin polimerowych o budowie “jądro-powłoka”. Polimery. 2002;47:95.

    CAS  Google Scholar 

  48. Flory PJ. Statistical mechanics of swelling of network structures. J Chem Phys. 1950. doi:10.1063/1.1747424.

    Google Scholar 

  49. Shinichi Y, Kenji T, Nobuaki N, Shoichi K, Hitoshi T, Eisaku H. Dielectric relaxation studies on water absorption of ethylene ionomers. Macromolecules. 1992. doi:10.1021/ma00052a015.

    Google Scholar 

  50. Mandal UK, Tripathy DK, De SK. Effect of silica filler on dynamic mechanical properties of ionic elastomer based on carboxylated nitrile rubber. J Appl Polym Sci. 1995. doi:10.1002/app.1995.070550805.

    Google Scholar 

  51. Vondracek P, Pouchaleon A. Ammonia-induced tensile set and swelling in silica-filled silicone rubber. Rubb Chem Technol. 1990. doi:10.5254/1.3538251.

    Google Scholar 

  52. Holliday L. Ionic polymers. London: Applied Science Pubilshers Ltd; 1975. p. 54.

    Google Scholar 

  53. Ponnamma D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S. Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter. 2011. doi:10.1039/c3sm51978c.

    Google Scholar 

  54. Crawford DM, Bass RG, Haas TW. Strain effects on thermal transitions and mechanical properties of thermoplastic polyurethane elastomers. Thermochim Acta. 1998. doi:10.1016/S0040-6031(98),00541-3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Gaca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaca, M., Zaborski, M. The properties of ethylene–propylene elastomers obtained with the use of a new cross-linking substance. J Therm Anal Calorim 125, 1105–1113 (2016). https://doi.org/10.1007/s10973-016-5404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5404-z

Keywords

Navigation