Skip to main content
Log in

The effect of curing temperature on the hydration of binary Portland cement

Slag and Portland cement—metakaolin-blended cements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of curing temperatures on the hydration of two binary systems comprising of Portland cement (PC) blended by metakaolin (MK) and blast-furnace slag (BFS) in two relative mass ratios (6/4, 5/5) was studied by means of isothermal calorimetry and combined TG/DSC technique in the temperature range of 30–60 °C. Higher curing temperatures accelerated the initial hydration reactions, especially in the case of more reactive MK-blended samples. However, except the lower replacement level of PC by BFS, all other samples displayed slowdown of hydration at later stages. The use of MK together with curing at 50 and 60 °C even resulted in the lower ultimate hydration degree after 48 h when compared with corresponding samples cured at 30 °C. Deceleration effect of higher curing temperatures was demonstrated mainly by decreasing amount of CSH phases. Pozzolanic activity of supplemental materials was affected by curing temperatures less than primary hydration reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li Z, Ding Z. Property improvement of Portland cement by incorporating with metakaolin and slag. Cement Concrete Res. 2003;33:579–84.

    Article  CAS  Google Scholar 

  2. Poona CS, Lama L, Koua SC, Wonga YL, Wong R. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cement Concrete Res. 2001;31:1301–6.

    Article  Google Scholar 

  3. Curcio F, Deangelis BA, Pagliolico S. Metakaolin as a pozzolanic microfiller for high-performance mortars. Cement Concrete Res. 1998;28(6):803–9.

    Article  CAS  Google Scholar 

  4. Fattuhi NI. The setting of mortar mixes subjected to different temperatures. Cement Concrete Res. 1988;18(5):669–73.

    Article  CAS  Google Scholar 

  5. Kjellsen KO, Detwiler RJ. Reaction kinetics of Portland cement mortars hydrated at different temperatures. Cement Concrete Res. 1992;2:112–20.

    Article  Google Scholar 

  6. Escalante-García JI, Sharp JH. Effect of temperature on the hydration of the main clinker phases in Portland cements: Part I, neat cements. Cement Concrete Res. 1998;28(9):1245–57.

    Article  Google Scholar 

  7. Escalante-García JI, Sharp JH. The microstructure and mechanical properties of blended cements hydrated at various temperatures. Cement Concrete Res. 2001;31(5):695–702.

    Article  Google Scholar 

  8. Verbeck GJ, Helmuth RH. In: Proceedings of the International Conference on Cement Microscopy, Tokyo, pp. 1–32; 1968.

  9. Elkhadiri I, Palacios M, Puertas F. Effect of curing temperature on cement hydration. Ceram-Silikáty. 2009;53(2):65–75.

    CAS  Google Scholar 

  10. Khan SU, Nuruddin MF, Ayub T, Shafiq N. Effects of different mineral admixtures on the properties of fresh concrete. Hindawi Publishing Corporation. Sci World J. 2014;. doi:10.1155/2014/986567.

    Google Scholar 

  11. Wang Q, Li M, Jiang G. The difference among the effects of high-temperature curing on the early hydration properties of different cementitious systems. J Therm Anal Calorim. 2014;118:51–8.

    Article  CAS  Google Scholar 

  12. Krajči Ľ, Mojumdar SC, Janotka I, Puertas F, Palacios M, Kuliffayová M. Performance of composites with metakaolin-blended cements. J Therm Anal Calorim. 2015;119:851–63.

    Article  Google Scholar 

  13. Silva PS, Glasser FP. Phase relation in the system CaO–Al2O3–SiO2–H2O relevant to metakaolin–calcium hydroxide hydration. Cement Concrete Res. 1993;23:627–39.

    Article  Google Scholar 

  14. Frías Rojas M, Sánchez de Rojas MI. The effect of high curing temperature on the reaction kinetics in MK/lime and MK-blended cement matrices at 60 °C. Cement Concrete Res. 2003;33:643–9.

    Article  Google Scholar 

  15. Frías Rojas M, Sánchez de Rojas MI. Influence of metastable hydrated phases on the pore size distribution and degree of hydration of MK-blended cements cured at 60 °C. Cement Concrete Res. 2005;35:1292–8.

    Article  Google Scholar 

  16. Escalante-García JI, Sharp JH. Effect of temperature on the early hydration of Portland cement and blended cements. Adv Cem Res. 2000;12(3):121–30.

    Article  Google Scholar 

  17. Pane I, Hansen W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement Concrete Res. 2005;35:1155–64.

    Article  CAS  Google Scholar 

  18. Nasir NAM, Abd Aziz FNA, Safiee NA. Hydration of the combinations of ground granulated blast furnace slag cements. Aust J Basic Appl Sci. 2014;8(1):392–6.

    Google Scholar 

  19. Moser RD, Jayapalan AR, Garas VY, Kurtis KE. Assessment of binary and ternary blends of metakaolin and Class C fly ash for alkali-silica reaction mitigation in concrete. Cement Concrete Res. 2010;40:1664–72.

    Article  CAS  Google Scholar 

  20. Shekarchi M, Bonakdar A, Bakhshi M, Mirdamadi A, Mobasher B. Transport properties in metakaolin blended concrete. Cement Concrete Res. 2010;24:2217–23.

    Google Scholar 

  21. Justice JM, Kurtis KE. Influence of metakaolin surface area on properties of cement-based materials. ASCE J Mater Civil Eng. 2007;19(9):762–71.

    Article  CAS  Google Scholar 

  22. Lagier F, Kurtis KE. Influence of Portland cement composition on early age reactions with metakaolin. Cement Concrete Res. 2007;37:1411–7.

    Article  CAS  Google Scholar 

  23. Deboucha W, Nadjib Oudjit M, Bouzid A, Belagraa L. Effect of incorporating blast furnace slag and natural pozzolana on compressive strength and capillary water absorption of concrete. Proc Eng. 2015;108:254–61.

    Article  CAS  Google Scholar 

  24. Taylor HFW. Cement chemistry. 2nd ed. London: Thomas Telford Publishing; 1998.

    Google Scholar 

  25. Ylmén R, Wadsö L, Panas I. Insights into early hydration of Portland limestone cement from infrared spectroscopy and isothermal calorimetry. Cement Concrete Res. 2010;40:1541–6.

    Article  Google Scholar 

  26. Hesse C, Goetz-Neunhoeffer F, Neubauer J. A new approach in quantitative in situ XRD of cement pastes: Correlation of heat flow curves with early hydration reactions. Cement Concrete Res. 2011;41:123–8.

    Article  CAS  Google Scholar 

  27. Han F, Zhang Z, Wang D, Yan P. Hydration kinetics of composite binder containing slag at different temperatures. J Therm Anal Calorim. 2015;121:815–27.

    Article  CAS  Google Scholar 

  28. Klemczak B, Batog M. Heat of hydration of low-clinker cements part I. Semi-adiabatic and isothermal tests at different temperature. J Therm Anal Calorim. 2016;123:1351–60.

    Article  CAS  Google Scholar 

  29. Liu S, Wang L, Gao Y, Yu B, Bai Y. Comparing study on hydration properties of various cementitious systems. J Therm Anal Calorim. 2014;118:1483–92.

    Article  CAS  Google Scholar 

  30. Lin F, Meyer C. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure. Cement Concrete Res. 2009;39:255–65.

    Article  CAS  Google Scholar 

  31. Angulski da Luz C, Hooton RD. Influence of curing temperature on the process of hydration of supersulfated cements at early age. Cement Concrete Res. 2015;77:69–75.

    Article  CAS  Google Scholar 

  32. Xiong X, van Breugel K. Isothermal calorimetry study of blended cements and its application in numerical simulations. HERON. 2001;46(3):151–9.

    Google Scholar 

  33. Barnett SJ, Soutsos MN, Millard SG, Bungey JH. Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cement Concrete Res. 2006;36:434–40.

    Article  CAS  Google Scholar 

  34. Escalante JI, Gómez LY, Johal KK, Mendoza G, Mancha H, Méndez J. Reactivity of blast-furnace slag in portland cement blends hydrated under different conditions. Cement Concrete Res. 2001;31:1403–9.

    Article  CAS  Google Scholar 

  35. Fares H, Remond S, Noumowe A, Cousture A. High temperature behavior of self-consolidating concrete microstructure and physicochemical properties. Cement Concrete Res. 2010;40:488–96.

    Article  CAS  Google Scholar 

  36. Ibrahim IA, ElSersy HH, Abadir MF. The use of thermal analysis in the approximate determination of the cement content in concrete. J Therm Anal Calorim. 2004;76:713–8.

    Article  CAS  Google Scholar 

  37. Paulik F, Paulik J, Arnold M. Thermal decomposition of gypsum. Thermochim Acta. 1992;200:195–204.

    Article  CAS  Google Scholar 

  38. Silva de Souzab LM, Fairbairn EMR, Filho RDT, Cordeiro GC. Influence of initial CaO/SiO2 ratio on the hydration of rice husk ash-Ca(OH)2 and sugar cane bagasse ash-Ca(OH)2 pastes. Quim Nova. 2014;37(10):1600–5.

    Google Scholar 

  39. Moropoulou A, Bakolas A, Aggelakopoulou E. Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim Acta. 2004;420:135–40.

    Article  CAS  Google Scholar 

  40. Cabrera J, Rojas MF. Mechanism of hydration of the metakaolin–lime–water system. Cement Concrete Res. 2001;31:177–82.

    Article  CAS  Google Scholar 

  41. Bažant ZP, Kaplan MF. Concrete at high temperatures. London: Longman Addison-Wesley; 1996.

    Google Scholar 

  42. Matsushita F, Aono Y, Shibata S. Carbonation degree of autoclaved aerated concrete. Cement Concrete Res. 2000;30:1741–5.

    Article  CAS  Google Scholar 

  43. Villain G, Thiery M, Platret G. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cement Concrete Res. 2007;37:1182–92.

    Article  CAS  Google Scholar 

  44. Sauman Z. Carbonization of porous concrete and its main binding components. Cement Concrete Res. 1971;1:645–62.

    Article  Google Scholar 

  45. Amin MS, Abo-El-Enein SA, Abdel Rahman A, Alfalous Khaled A. Artificial pozzolanic cement pastes containing burnt clay with and without silica fume. J Therm Anal Calorim. 2012;107:1105–15.

    Article  CAS  Google Scholar 

  46. Amer AA. Thermal analysis of hydrated fly ash-lime pastes. J Therm Anal Calorim. 1998;54:837–43.

    Article  CAS  Google Scholar 

  47. Palou MT, Šoukal F, Boháč M, Šiler P, Ifka T, Živica V. Performance of G-Oil Well cement exposed to elevated hydrothermal curing conditions. J Therm Anal Calorim. 2014;118:865–74.

    Article  CAS  Google Scholar 

  48. Habert G, Choupay N, Montel JM, Guillaume D, Escadeillas G. Effects of the secondary minerals of the pozzolans on their Pozzolanic activity. Cement Concrete Res. 2008;7:963–75.

    Article  Google Scholar 

  49. Kuliffayová M, Krajči Ľ, Janotka I, Šmatko V. Thermal behaviour and characterization of cement composites with burnt kaolin sand. J Therm Anal Calorim. 2012;108:425–32.

    Article  Google Scholar 

  50. Shaw S, Henderson CMB, Komanschek BU. Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: An in situ TGA/DSC and synchrotron radiation SAXS/WAXS study. Chem Geol. 2000;167:141–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by courtesy of the Slovak Grant Agency VEGA No. 2/0082/14 and by Project Centres for Materials Research at FCH BUT, Reg. No. CZ.1.05/2.1.00/01.0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin T. Palou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palou, M.T., Kuzielová, E., Žemlička, M. et al. The effect of curing temperature on the hydration of binary Portland cement. J Therm Anal Calorim 125, 1301–1310 (2016). https://doi.org/10.1007/s10973-016-5395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5395-9

Keywords

Navigation