Skip to main content
Log in

Determination of the pozzolanic activity of mortar’s components by thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Historic lime mortars are complex multicomponent system whose mineralogical and chemical composition changes over time. With age, hydraulic phases are converted by carbonation process to calcium carbonate and reactive silicon and aluminium oxides. The consolidation of lime mortars is usually based on the dotation of the Ca(OH)2 into its matter so pozzolanic reaction may possibly take place. The study was aimed to explore pozzolanic potential of sand grains and degraded binder with respect to renewal of hydraulic phases which could contribute to mortar’s mechanical strength and therefore prolong its durability. For this purpose, pastes of mortar components with lime hydrate were prepared and stored in wet conditions (RH = 99 ± 1 %, T = 30 ± 1 °C) for 180 days. Pozzolanic reaction products were studied at different ages using thermal analysis and X-ray diffraction. With respect to sand grains pozzolanic activity, both methods confirmed the presence of newly formed monocarboaluminate as an only hydraulic phase; moreover, CSH and hydrocalumite have been found in degraded binder pastes. CSH, stratlingite and monocarboaluminate were detected as products of pozzolanic reaction of silicate and metakaolin with calcium hydroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci. 2009;43:392–400.

    Article  CAS  Google Scholar 

  2. Frías M, Cabrera J. Pore size distribution and degree of hydration of metakaolin–cement pastes. Cement Concrete Res. 2000;30:561–9.

    Article  Google Scholar 

  3. Liu S, Xie G, Wang S. Effect of curing temperature on hydration properties of waste glass powder in cement-based materials. J Therm Anal Calorim. 2015;119:47–55.

    Article  CAS  Google Scholar 

  4. Massazza F. Properties and applications of natural pozzolanas. In: Bensted J, Barnes P, editors. Structure and performance of cements. London: Spon Press; 2002. p. 326–352.

  5. Trník A, Scheinherrová L, Medveď I, Černý R. Simultaneous DSC and TG analysis of high-performance concrete containing natural zeolite as a supplementary cementitious material. J Therm Anal Calorim. 2015;121:67–73.

    Article  Google Scholar 

  6. Sabir BB, Wild S, Bai J. Metakaolin and calcined clays as pozzolans for concrete: a review. Cement Concrete Comp. 2001;23:441–54.

    Article  CAS  Google Scholar 

  7. Vitruvius P. The ten books on architecture. Morgan MH, trans. New York: Dover, 1960.

  8. Oleson JP, Bottalico L, Brandon C, Cucitore R, Gotti E, Hohlfelder RL. Reproducing a Roman maritime structure with Vitruvian pozzolanic concrete. J Roman Archaeol. 2006;19:29–52.

    Article  Google Scholar 

  9. Drdácký M, Fratini F, Frankeová D, Slížková Z. The Roman mortars used in the construction of the Ponte di Augusto (Narni, Italy)—a comprehensive assessment. Constr Build Mater. 2013;38:1117–28.

    Article  Google Scholar 

  10. Frankeová D, Slížková Z, Drdácký M. Characteristics of mortars from ancient bridges. Hist Mortars Charact Assess Repair. 2012;7:165–74.

    Article  Google Scholar 

  11. Nežerka V, Slížková Z, Tesárek P, Plachý T, Frankeová D, Petráňová V. Comprehensive study on mechanical properties of lime-based pastes with additions of metakaolin and brick dust. Cement Concrete Res. 2014;64:17–29.

    Article  Google Scholar 

  12. Gameiro A, Silva AS, Veiga R, Velosa A. Hydration products of lime–metakaolin pastes at ambient temperature with ageing. Thermochim Acta. 2012;535:36–41.

    Article  CAS  Google Scholar 

  13. Cabrera J, Rojas MF. Mechanism of hydration of the metakaolin–lime–water system. Cement Concrete Res. 2000;31:177–82.

    Article  Google Scholar 

  14. Morsy MS, Al-Salloum Y, Almusallam T, Abbas H. Effect of nano-metakaolin addition on the hydration characteristics of fly ash blended cement mortar. J Therm Anal Calorim. 2014;116:845–52.

    Article  CAS  Google Scholar 

  15. Silva AS, Gameiro A, Grilo J, Veiga R, Velosa A. Long-term behavior of lime–metakaolin pastes at ambient temperature and humid curing condition. Appl Clay Sci. 2014;88–89:49–55.

    Article  Google Scholar 

  16. Arizzi A, Cultrone G. Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: a mineralogical, textural and physical-mechanical study. Constr Build Mater. 2012;31:135–43.

    Article  Google Scholar 

  17. Cardoso D, Gameiro A, Silva AS, Faria P, Vieiral R, Veiga R, Velosa A. Influence of curing conditions in air lime-metakaolin blended mortars—a mineralogical and mechanical study. In: 3rd Historic Mortars Conference. 2013.

  18. Fernandez R, Martirena F, Scrivener KL. The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cement Concrete Res. 2011;41:113–22.

    Article  CAS  Google Scholar 

  19. Tironi A, Trezza AM, Scian AN, Irassar EF. Thermal analysis to assess pozzolanic activity of calcined kaolinitic clays. J Therm Anal Calorim. 2014;117:547–56.

    Article  CAS  Google Scholar 

  20. Najimi M. An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr Build Mater. 2012;35:1023–33.

    Article  Google Scholar 

  21. Tavares M, Veiga R, Fragata A. Conservation of old renderings—the consolidation of rendering with loss of cohesion. In: 1st Historic Mortars Conference. 2008.

  22. Slížková Z, Drdácký M, Viani A. Consolidation of weak lime mortars by means of saturated solution of calcium hydroxide or barium hydroxide. J Cult Herit. 2015;16:452–60.

    Article  Google Scholar 

  23. Drdácký M, Slížková Z. Consolidation of historic façades with multi cyclic lime water impregnation—practical problems. Stud Conserv. 2015;60:121–30.

    Article  Google Scholar 

  24. Dei L, Salvadori B. Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. J Cult Herit. 2006;7:110–5.

    Article  Google Scholar 

  25. Ziegenbalg G. Colloidal calcium hydroxide – a new material for consolidation and conservation of carbonatic stones. In: Proceedings of the 11th International Congress on deterioration and conservation of stone. 2008. pp. 1109–1115.

  26. Bakolas A, Aggelakopoulou E, Anagnostopoulou S, Moropoulou A. Evaluation of pozzolanic activity and physico-mechanical characteristics in metakaolin–lime pastes. J Therm Anal Calorim. 2006;84:157–63.

    Article  CAS  Google Scholar 

  27. Moropoulou A, Bakolas A, Aggelakopoulou E. Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim Acta. 2004;420:135–40.

    Article  CAS  Google Scholar 

  28. Donatello S, Tyrer M, Cheeseman CR. Comparison of test methods to assess pozzolanic activity. Cement Concrete Comp. 2010;32:121–7.

    Article  CAS  Google Scholar 

  29. Payá J, Borrachero MV, Monzó J, Peris-Mora E, Amahjour F. Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cement Concrete Res. 2001;31:41–9.

    Article  Google Scholar 

  30. Rosell-Lam M, Villar-Cociña E, Frías M. Study on the pozzolanic properties of a natural Cuban zeolitic rock by conductometric method: kinetic parameters. Constr Build Mater. 2011;25:644–50.

    Article  Google Scholar 

  31. Přikryl R, Šťastná A. Contribution of clayey–calcareous silicite to the mechanical properties of structural mortared rubble masonry of the medieval Charles Bridge in Prague (Czech Republic). En Geol. 2010;115:257–67.

    Article  Google Scholar 

  32. Nunes CL, Slížková Z. Hydrophobic lime based mortars with linseed oil: characterization and durability assessment. Cement Concrete Res. 2014;61–62:28–39.

    Article  Google Scholar 

  33. Biscontin G, Birelli MP, Zendri E. Characterization of binders employed in the manufacture of Venetian historical mortars. J Cult Herit. 2002;3:31–7.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Czech Science Foundation, under Project No. P105/12/G059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dita Frankeová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frankeová, D., Slížková, Z. Determination of the pozzolanic activity of mortar’s components by thermal analysis. J Therm Anal Calorim 125, 1115–1123 (2016). https://doi.org/10.1007/s10973-016-5360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5360-7

Keywords

Navigation