Skip to main content
Log in

Calorimetric study of calcium nitrate tetrahydrate and magnesium nitrate hexahydrate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The heat capacity and enthalpy of fusion of calcium nitrate tetrahydrate and magnesium nitrate hexahydrate were determined from 234.15 K to melting temperature by DSC. The modified stepwise method was used for heat capacity measurement, and enthalpy of fusion was determined from continuous heating by the rate of 10 K min−1 (Pilař et al. in J Therm Anal Calorim 118:485–491, 2014). Determined values were used for the calculation of entropy and Gibbs energy in the experimental temperature range. Melting point and enthalpy of fusion of calcium nitrate tetrahydrate are 317.1 ± 0.3 K and 36.6 ± 0.2 kJ mol−1, and for the magnesium nitrate hexahydrate, the values are 362.9 ± 0.4 K and 40.8 ± 0.5 kJ mol−1. One solid–solid phase transformation was observed for the magnesium salt at 345.7 ± 0.9 K with enthalpy of transition 3.1 ± 0.2 kJ mol−1. The available accumulated energy composed of sensible (heating) and latent heat (phase transformations) is 43.4 and 63.8 kJ mol−1 for the hydrated calcium and magnesium nitrate, respectively. The kinetics of solid–solid phase transformation for magnesium salt was studied under non-isothermal conditions by DSC, and the process was described using autocatalytical model with parameters in the range of 0.50–0.85 for m and range of 2.58–1.48 for n, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pilař R, Honcová P, Košťál P, Sádovská G, Svoboda L. Modified stepwise method for determining heat capacity by DSC. J Therm Anal Calorim. 2014;118:485–91.

    Article  Google Scholar 

  2. Lorsch GH, Kauffman KW, Dentons JC. Thermal energy storage for solar heating and off-peak air conditioning. Energy Convers. 1975;15:1–8.

    Article  CAS  Google Scholar 

  3. Zalba B, Marín JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Thermal Eng. 2003;23:251–83.

    Article  CAS  Google Scholar 

  4. Voigt W, Zeng D. Solid-liquid equilibria in mixtures of molten salt hydrates for the design of heat storage materials. Pure Appl Chem. 2002;74:1909–20.

    Article  CAS  Google Scholar 

  5. Angell CA, Tucker JC. Heat capacities and fusion entropies of the tetrahydrates of calcium nitrate, cadmium nitrate, and magnesium acetate. Concordance of calorimetric and relaxational “ideal” glass transition temperatures. J Phys Chem. 1974;78:278–81.

    Article  CAS  Google Scholar 

  6. Guion J, Sauzade JD, Laügt M. Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates. Thermochim Acta. 1983;67:167–79.

    Article  CAS  Google Scholar 

  7. Naumann R, Emons HH. Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. J Thermal Anal. 1989;35:1009–31.

    Article  CAS  Google Scholar 

  8. Xu Y, Hepler GL. Calorimetric investigations of crystalline, molten, and supercooled Ca(NO3)2·4H2O and of concentrated Ca(NO3)2 (aq). J Chem Thermodyn. 1993;25:91–7.

    Article  CAS  Google Scholar 

  9. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials. Renew Sustain Energy Rev. 2009;13:318–45.

    Article  CAS  Google Scholar 

  10. Nikolova D, Maneva M. Thermal investigations of nitrate-hydrates and deuterates of Ca2+, Cd2+ and Mg2+. J Therm Anal. 1995;44:869–75.

    Article  CAS  Google Scholar 

  11. Hattori T, Iwadate Y, Igarashi K, Kawamura K, Mochinaga J. Thermal characteristic of molten calcium nitrate tetrahydrate. Denki Kagaku. 1986;54:804–5.

    CAS  Google Scholar 

  12. Zhdanov VM, Shamova VA, Drakin SI. Heat capacity of crystal hydrates of magnesium, aluminum, calcium, nickel, and lanthanum nitrates and copper sulfate pentahydrate. Deposited Doc. VINITI. 1976;2874–76:1–10.

    Google Scholar 

  13. Cantor S. DSC study of melting and solidification of salt hydrates. Thermochim Acta. 1979;33:69–86.

    Article  CAS  Google Scholar 

  14. Naumann R, Emons HH, Köhnke K, Paulik J, Paulik F. Investigation on thermal behaviour of Mg(NO3)2·6H2O. J Therm Anal. 1988;34:1327–33.

    Article  CAS  Google Scholar 

  15. Riesenfeld EH, Milchsack C. Versuch einer Bestimmung des Hydratationsgrades von Salzen in koncentrierten Lösungen. Zeitschrift für anorganische Chemie. 1914;85:401–29.

    Article  Google Scholar 

  16. Demirbas MF. Thermal energy storage and phase change materials: an overview. Energy Source Part B. 2006;1:85–95.

    Article  CAS  Google Scholar 

  17. Nagano K, Ogawa K, Mochida T, Hayashi K, Ogoshi H. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat. Appl Therm Eng. 2004;4:221–32.

    Article  Google Scholar 

  18. Pouillen P. Les transformations polymorphiques des cristaux de nitrates de métaux bivalents hexahydratés. CR Hebd Acad Sci. 1960;250:3318–9.

    CAS  Google Scholar 

  19. Šesták J. Thermophysical properties of solids, their measurements and theoretical analysis. Amsterdam: Elsevier; 1984.

    Google Scholar 

  20. Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Article  Google Scholar 

  21. Málek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid-state processes. J Mater Res. 2001;16:1862–71.

    Article  Google Scholar 

  22. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  23. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24.

    Article  CAS  Google Scholar 

  24. Málek J. The kinetic-analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  25. Málek J, Criado JM, Šesták J, Militký J. The boundary-conditions for kinetic-models. Thermochim Acta. 1989;153:429–32.

    Article  Google Scholar 

  26. Málek J, Klikorka J. Crystallization kinetics of glassy GeS2. J Therm Anal. 1987;32:1883–93.

    Article  Google Scholar 

  27. Yaws CL. Heat capacities of solids-elements and inorganic compounds. In: Yaws’ handbook of thermodynamic properties for hydrocarbons and chemicals. Knovel. 2009. http://app.knovel.com/hotlink/toc/id:kpYHTPHC09/yaws-handbook-thermodynamic/yaws-handbook-thermodynamic. Accessed 31 March 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Sádovská.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sádovská, G., Honcová, P., Pilař, R. et al. Calorimetric study of calcium nitrate tetrahydrate and magnesium nitrate hexahydrate. J Therm Anal Calorim 124, 539–546 (2016). https://doi.org/10.1007/s10973-015-5159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5159-y

Keywords

Navigation