Skip to main content
Log in

Thermal stability and phase transformations of a FV535 steel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal stability and phase transformation temperatures in Firth-Vickers 535 (12Cr–Mo–VNbWCo) steel have been studied by differential scanning calorimetry and dilatometry. The (M s), (Ac 1) and (Ac 3) temperatures of this steel were measured using different heating and cooling rates; the results showed good agreement between both techniques, and in these studies was found that austenitic transformation is strongly dependent on the heating rate during continuous heating. The αγ transformation enthalpy for this steel was about 17 J g−1. Microstructure was analyzed by optical and scanning electron microscope, and in the results can be observed that this steel has a martensitic structure with Mo- and Nb-rich carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Klueh RL, Harries DR. Chapter 2: development of high (7–12 %) chromium martensitic steels, high-chromium ferritic and martensitic steels for nuclear applications. ASTM 2001:5–9.

  2. Erice B, Gálvez F, Cendón DA, Sánchez-Gálvez V. Flow and fracture behavior of FV535 steel at different triaxialities, strain rates and temperatures. Eng Fract Mech. 2012;79:1–17.

    Article  Google Scholar 

  3. Totten GE. Steel heat treatment metallurgy and technologies. 2nd ed. New York: Taylor & Francis; 2007.

    Google Scholar 

  4. Badeshia HKDH, Honeycombe RWK. Steel microstructure and properties. Amsterdam: Elsevier; 2006.

    Google Scholar 

  5. Morra PV, Mittemeijer EJ. Decomposition of iron-based martensite, a kinetic analysis by means of differential scanning calorimetry and dilatometry. J Therm Anal Calorim. 2001;64:905.

    Article  CAS  Google Scholar 

  6. Gojic M, Suceskaand M, Rajic M. Thermal analysis of low alloy Cr–Mo steel. J Therm Anal Calorim. 2004;75:947–56.

    Article  CAS  Google Scholar 

  7. Raju S, Ganesh BJ, Banerjee A, Mohandas E. Characterization of thermal stability and phase transformation energetics in tempered 9Cr–1Mo steel using drop and differential scanning calorimetry. Mater Sci Eng A. 2007;465:29–37.

    Article  Google Scholar 

  8. Andrews KW. J Iron Steel Inst. 1965;203:721.

    CAS  Google Scholar 

  9. Gómez M, Medina SF, Caruana G. Modelling of phase transformation kinetics by correction of dilatometry results for a ferritic Nb-microalloyed steel. ISIJ Int. 2003;43:1228–37.

    Article  Google Scholar 

  10. Yang JR, Yu TH, Wang CH. Martensitic transformations in AISI 440C stainless steel. Mater Sci Eng A. 2006;438:276–80.

    Google Scholar 

  11. Klancnik G, Medved J, Nagode A, Novak G, Petrovic DS. Influence of Mn on the solidification of Fe–Si–Al alloy for non-oriented electrical steel. J Therm Anal Calorim. 2014;116:295–302.

    Article  CAS  Google Scholar 

  12. Grajcar A, Zalecki W, Skrzypczyk P, Kilarski A, Kowalski A, Kolodziej S. Dilatometric study of phase transformations in advanced high-strength bainitic steel. J Therm Anal Calorim. 2014;118:739–48.

    Article  CAS  Google Scholar 

  13. Pugh SF, Little EA. Ferritic steels for fast reactor steam generators. London: BNES; 1978. p. 120.

    Google Scholar 

  14. Mackenzie DS, Totten GE. Analytical characterization of aluminum, steel and superalloys, chapter 5 “Thermal analysis of aluminum alloys”. 2006. p. 298–300.

  15. Bernshtein ML, Kaputkina LM, Prokoshkin SD. Tempering of steel. Moscow: MISiS; 1997.

    Google Scholar 

  16. Kleiner LM, Larinin DM, Spivak LV, Shatsov AA. Phase and structural transformations in low-carbon martensitic steels. Phys Metals Metallogr. 2009;108(2):153–60.

    Article  Google Scholar 

  17. Martin SD, de Cock T, García Junceda A, Caballero FG, Capderila C, de Andrés CG. Effect of heating rate on reaustenitisation of low carbon niobium microalloyed steel. Mater Sci Technol. 2008;24:266–72.

    Article  Google Scholar 

  18. Caballero FG, Capdevila C, García de Andrés C. An attempt to establish the variables that most directly influence the austenite formation process in steel. ISIJ Int. 2003;43:726–35.

    Article  CAS  Google Scholar 

  19. ASM International. ASM handbook. Heat treating. United States of America : s.n., 4; 1941. p. 121.

  20. Bu FZ, Wang XM, Chen L, Yang SW, Shang CJ, Misra RDK. Influence of cooling rate on the precipitation behavior in Ti–Nb–Mo microalloyed steels during continuous cooling and relationship to strength. Mater Charact. 2015;102:146–55.

    Article  CAS  Google Scholar 

  21. Zangeneh Sh, Ketabchi M, Lopez HF. Nanoscale carbide precipitation in Co–28Cr–5Mo–0.3C implant alloy during martensite transformation. Mater Lett. 2014;116:188–90.

    Article  CAS  Google Scholar 

  22. Grajcar A. Thermodynamic analysis of precipitation processes in Nb–Ti-microalloyed Si–Al TRIP steel. J Therm Anal Calorim. 2014;118:1011–20.

    Article  CAS  Google Scholar 

  23. Guo Z, Sha W, Li D. Quantification of phase transformation kinetics of 18 wt% Ni C250 maraging steel. Mater Sci Eng A. 2004;373:10–20.

    Article  Google Scholar 

  24. HakanAtapek S, Erisir E, Gumus S. Modeling and thermal analysis of solidification in allow alloy steel. J Therm Anal Calorim. 2013;114:179–83.

    Article  CAS  Google Scholar 

  25. Toji Y, Miyamoto G, Raabe D. Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation. Acta Mater. 2015;86:137–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Garcia-Sanchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra-Fuentes, L., Deaquino Lara, R., Hernandez-Rodriguez, M.A.L. et al. Thermal stability and phase transformations of a FV535 steel. J Therm Anal Calorim 123, 27–33 (2016). https://doi.org/10.1007/s10973-015-4948-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4948-7

Keywords

Navigation