Skip to main content
Log in

Heat capacities of crystalline and glassy lithium metaphosphate up to the transition region

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat capacity measurements have been conducted by means of DSC on both crystalline and glassy lithium metaphosphate, from room temperature up to the melting region. The heat capacity of the glass is slightly higher than that of the crystal. Contrary to the crystal, in the neighborhood of T g, C p increases rapidly by 10 J mol−1 K−1 conferring to this glass a “fragile character.” Nevertheless, the passage through T m does not show any discontinuity and the values of the glass and of the crystal are identical. The Debye model appears to be realistic to describe the glass heat capacity to temperature dependence. The Debye temperature and frequency were determined by minimizing the R p and χ 2 parameters of the C v fitting curve. From the calculation of the entropy of the liquid at T > T m, the excess entropy of the glass at T g was determined. Using the dependence of the glass transition on the heating rate, we calculated the values of the activation energy for structural relaxation (E relax) and of the lower limit of the glass transition temperature (\( {T_{\text{g}}^{{^\circ }} } \)) which is a thermodynamic parameter, contrary to T g which is a kinetic parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Donald IW. Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings. J Mater Sci. 1993;28:2841–86.

    Article  CAS  Google Scholar 

  2. Morena R. Phosphate glasses as alternatives to Pb-based sealing frits. J Non Cryst Solids. 2000;263–264:382–7.

    Article  Google Scholar 

  3. Ehrt D, Seeber W. Glass for high performance optics and laser technology. J Non Cryst Solids. 1991;129:19–30.

    Article  CAS  Google Scholar 

  4. Campbell JH, Suratwala TI. Nd-doped phosphate glasses for high-energy/high-peak-power lasers. J Non Cryst Solids. 2000;263–264:318–41.

    Article  Google Scholar 

  5. Franks K, Abrahams I, Georgiou G, Knowles JC. Investigation of thermal parameters and crytallisation in a ternary CaO–Na2O–P2O5-based glass system. Biomaterials. 2001;22(5):497–501.

    Article  CAS  Google Scholar 

  6. Abou Neel EA, Pickup DM, Valappil SP. Bioactive functional materials: a perspective on -based glasses. J Mater Chem. 2009;19:690–701.

    Article  CAS  Google Scholar 

  7. Money BK, Hariharan K. Lithium ion conduction in lithium metaphosphate based systems. Appl Phys. 2007;A88:647–52.

    Article  CAS  Google Scholar 

  8. Money BK, Hariharan K. Crystallization kinetics and phase transformation in superionic lithium metaphosphate (Li2O–P2O5) glass system. J Phys: Condens Matter. 2009;21:115102.

    Google Scholar 

  9. Inaba S, Oda S, Morinaga K. Heat capacity of oxide glasses measured by AC calorimetry. J Non Cryst Solids. 2002;306:42–9.

    Article  CAS  Google Scholar 

  10. Inaba S, Oda S, Morinaga K. Heat capacity of oxide glasses at high temperature region. J Non Cryst Solids. 2003;325:258–66.

    Article  CAS  Google Scholar 

  11. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. J Mater Sci Eng. 1976;23:173–7.

    Article  CAS  Google Scholar 

  12. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1976;9:369–73.

    Article  CAS  Google Scholar 

  13. Hill JO. For better thermal analysis and calorimetry. 3rd ed. ICTAC; 1991.

  14. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;A32:751–67.

    Article  CAS  Google Scholar 

  15. Rocherullé J, Trochet F, Marchand R. Kinetics of the NaPO3 glass devitrification studied by differential thermal analysis and X-ray powder diffraction. Key Eng Mater. 2002;206–213:2045–8.

    Article  Google Scholar 

  16. Makishima A, Mackenzie JD. Direct calculation of Young’s modulus of glass. J Non-Cryst Solids. 1973;12:35–45.

    Article  CAS  Google Scholar 

  17. Rocherullé J, Ecolivet C, Poulain M, Verdier P, Laurent Y. Elastic moduli of oxynitride glasses. Extension of Makishima and Mackenzie’s theory. J Non Cryst Solids. 1989;108:187–93.

    Article  Google Scholar 

  18. Kingery WD, Bowen HK, Uhlmann DR. Introduction to ceramics. 2nd ed. Singapore: Wiley; 1991. p. 589.

    Google Scholar 

  19. Rocherullé J, Matecki M, Delugeard Y. Heat capacity measurements of MgYSiAlON glasses. J Non Cryst Solids. 1998;238:51–6.

    Article  Google Scholar 

  20. Angell CA. Strong and fragile liquids. In: Ngai K, Wright GB, editors. Relaxation in complex systems. Springfield: US Dpt of Commerce; 1985.

    Google Scholar 

  21. Laughlin WT, Uhlmann DR. Viscous flow in simple organic liquids. J Phys Chem. 1972;76(16):2317–25.

    Article  CAS  Google Scholar 

  22. Lewis GN, Randall M. Thermodynamics. 2nd ed. New York: Mc Graw-Hill; 1961.

    Google Scholar 

  23. Martin RA, Twyman HL, Rees GJ, Smith JM, Barney ER, Smith ME, Hanna JV, Newport RJ. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR. Phys Chem Chem Phys. 2012;14:12105–13.

    Article  CAS  Google Scholar 

  24. Hudgens JJ. The structure and properties of anhydrous, alkali ultra-phosphate glasses. Retrospective theses and dissertations, Paper 11267; 1994.

  25. Wers E, Oudadesse H. Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses. J Therm Anal Calorim. 2014;115(3):2137–2144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rocherullé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocherullé, J., Massera, J., Oudadesse, H. et al. Heat capacities of crystalline and glassy lithium metaphosphate up to the transition region. J Therm Anal Calorim 123, 401–407 (2016). https://doi.org/10.1007/s10973-015-4938-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4938-9

Keywords

Navigation