Skip to main content
Log in

Oxidation resistance of magnesium silicide under high-temperature air exposure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, the oxidation resistance and mechanism of the intermetallic compound of magnesium silicide (Mg2Si) were examined, which was formed by pack cementation technique for the first time. This method is reported to be economic, simple and environmental friendlier comparing with other coating processes. The oxidation resistance was investigated, under high-temperature air exposure by in situ thermogravimetric measurements. Moreover, the mechanism and oxidation kinetics were also examined by four different isothermal oxidations at 550, 600, 650 and 700 °C. It was found that the specimens begin to oxidize slightly over 465 °C, and over 650 °C the oxidation rate increases significantly. After isothermal oxidation tests at four different temperatures, SEM and XRD analyses of the samples revealed that the main products were MgO and Si, which were located in an additional layer formed on the surface of the specimens. Moreover, mixed oxides were also identified at the highest temperature oxidation tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tritt TM, Subramanian MA. Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 2006;36:188–229.

  2. Zhang Q, Zhao XB, Yin H, Zhu TJ. Thermoelectric performance of Mg2 − xCaxSi compounds. J Alloys Compd. 2008;464:9–12.

    Article  CAS  Google Scholar 

  3. Akasaka M, Iida T, Nemoto T, Soga J, Sato J, Makino K, Fukano M, Takanashi Y. Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics. J Cryst Growth. 2007;304(1):196–201.

    Article  CAS  Google Scholar 

  4. Yang MJ, Shen Q, Zhang LM. Anomalous thermal expansion and spontaneous magnetostriction of Gd2Fe16Cr compound. Chin Phys B. 2011;20:106202.

    Article  Google Scholar 

  5. Jung J-Y, Kim I-H. Solid-state synthesis of Te-doped Mg2Si. J Electron Mater. 2011;40:1144–8.

    Article  CAS  Google Scholar 

  6. Savary E, Gascoin F, Marinel S. Fast synthesis of nanocrystalline Mg2Si by microwave heating: a new route to nanostructured thermoelectric materials. Dalton Trans. 2010;39:11074–80.

    Article  CAS  Google Scholar 

  7. Schilz J, Riffel M, Pixius K, Meyer HJ. Synthesis of thermoelectric materials by mechanical alloying in planetary ball mills. Powder Technol. 1999;105:149–54.

    Article  CAS  Google Scholar 

  8. Bux SK, Yeung MT, Toberer ES, Snyder GJ, Kaner RB, Fleurial JP. Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. J Mater Chem. 2011;21:12259–66.

    Article  CAS  Google Scholar 

  9. Godlewska E, Mars K, Zimowski RMS. Combustion synthesis of Mg2Si. Intermetallics. 2011;19(12):1983–8.

    Article  CAS  Google Scholar 

  10. Song S-W, Striebel KA, Song X, Cairns E. Amorphous and nanocrystalline Mg2Si thin film electrodes. J Power Sources. 2003;119–121:110–2.

    Article  Google Scholar 

  11. Kim H, Choi J, Sohn HJ, Kang T. The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries. J Electrochem Soc. 1999;146:4401–5.

    Article  CAS  Google Scholar 

  12. Zaitsev VK, Fedorov MI, Gurieva EA, Eremin IS, Konstantinov PP, Samunin AY, Vedernikov MV. Highly effective Mg2Si1 − xSnx thermoelectric. Phys Rev B. 2006;74:045207.

    Article  Google Scholar 

  13. Tani J-I, Kido H. Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B. 2005;364(1–4):218–24.

    Article  CAS  Google Scholar 

  14. Makita Y. Materials availability for thin film solar cells. AIP Conf Proc. 1997;404:3–10.

  15. Wang L, Qin XY. The effect of mechanical milling on the formation of nanocrystalline Mg2Si through solid-state reaction. Scripta Mater. 2003;49:243–8.

    Article  CAS  Google Scholar 

  16. Mahan JE, Vantomme A, Langouche G, Becker JP. Semiconducting Mg2Si thin films prepared by molecular-beam epitaxy. Phys Rev B: Condens Matter. 1996;54(23):16965–71.

    Article  CAS  Google Scholar 

  17. Janega PL, McCaffrey J, Landheer D, Buchanan M, Denhoff M, Mitchel D. Contact resistivity of some magnesium/silicon and magnesium silicide/silicon structures. Appl Phys Lett. 1988;53(21):2056–8.

    Article  CAS  Google Scholar 

  18. Stathokostopoulos D, Chaliampalias D, Stefanaki E, Polymeris G, Pavlidou E, Chrissafis K, Hatzikraniotis E, Paraskevopoulos K, Vourlias G. Structure, morphology and electrical properties of Mg2Si layers deposited by pack cementation. Appl Surf Sci. 2013;285:417–24.

    Article  CAS  Google Scholar 

  19. Stathokostopoulos D, Chaliampalias D, Pavlidou E, Chrissafis K, Stergioudis G, Patsalas P, Vourlias G. Protection of Cu components with Mg and Al coatings deposited by pack cementation. Surf Eng. 2014;30(12):886–92.

    Article  Google Scholar 

  20. Tani JI, Τakahashi M, Kido H. Thermoelectric properties and oxidation behavior of magnesium silicide. IOP Conf Ser Mater Sci Eng. 2011;18:142013.

    Article  Google Scholar 

  21. Borshchev VM, Dyachenko AN, Kiselev AD, Kraidenko RI. Production of silicon from magnesium silicide. Russ J Appl Chem. 2013;86(4):493–7.

    Article  CAS  Google Scholar 

  22. Stathokostopoulos D, Chaliampalias D, Pavlidou E, Hatzikraniotis E, Stergioudis G, Paraskevopoulos KM, Vourlias G. Formation of Mg2Si thick films on Si substrates using pack cementation process. AIP Conf Proc. 2012;1449:203–6.

    CAS  Google Scholar 

  23. Stathokostopoulos D, Stefanaki EC, Ioannou M, Polymeris GS, Chaliampalias D, Pavlidou E, Kyratsi Th, Paraskevopoulos KM, Vourlias G, Hatzikraniotis E. Thermoelectric properties of Mg2Si coatings deposited by pack cementation assisted process on heavily doped Si substrates. Phys Status Solidi A. 2014;211:1308–14.

    Article  CAS  Google Scholar 

  24. PC Powder Diffraction Files, JCPDS-ICDD, 2003.

  25. Mikhail SA, King PE. High-temperature thermal analysis study of the reaction between magnesium oxide and silica. J Therm Anal. 1999;40:79–84.

    Article  Google Scholar 

  26. Brause M, Braun B, Ochs D, Maus-Friedrichs W, Kempter V. Surface electronic structure of pure and oxidized non-epitaxial Mg, Si layers on Si (111). Appl Surf Sci. 1998;398:184–94.

    Article  CAS  Google Scholar 

  27. Eliezer D, Alves H. Corrosion and oxidation of magnesium alloys. In: Kurtz M, editor. Handbook of materials selections. New York: Wiley; 2002. p. 267–92.

    Chapter  Google Scholar 

  28. Cullity BD. Elements of X-ray diffraction. Massachusetts: Addison-Wesley publishing company; 1956.

    Google Scholar 

  29. Zhang SL, Pisch A, D’hemle FM. Oxidation of refractory intermetallic compounds: kinetics and thermodynamics. Philos Mag A. 1996;73(3):709–22.

    Article  CAS  Google Scholar 

  30. Chaliampalias D, Vourlias G, Pavlidou E, Chrissafis K. Examination of the oxidation resistance of Cr–Mo–V tool steel by thermal analysis. J Therm Anal Calorim. 2012;108:677–84.

    Article  CAS  Google Scholar 

  31. Pieraggi B. Calculations of parabolic reaction rate constants. Oxid Met. 1987;27:177–85.

    Article  CAS  Google Scholar 

  32. Vourlias G, Pistofidis N, Psyllaki P, Pavlidou E, Chrissafis K. Initial stages of oxidation of a precipitation-hardening (PH) steel. J Therm Anal Calorim. 2010;101:893–8.

    Article  CAS  Google Scholar 

  33. Pieraggi B, Rapp RA. Chromia scale growth in alloy oxidation and the reactive element effect. J Electrochem Soc. 1993;140:2844–50.

    Article  CAS  Google Scholar 

  34. Fontana MG. Corrosion engineering. 3rd ed. New York: McGraw Hill; 1986.

    Google Scholar 

  35. Kofstad P. High temperature corrosion. 3rd ed. New York: Elsevier; 1988.

    Google Scholar 

  36. Birks N, Meier GH. Introduction to high temperature oxidation of metals. London: Edward Arnold; 1983.

    Google Scholar 

  37. Farmer VC. Infrared spectra of minerals. In: Farmer VC, editor. London: Mineralogical Society; 1974. p. 183.

  38. Hofmeister AM, Keppel E, Speck AK. Absorption and reflection infrared spectra of MgO and other diatomic compounds. Mon Not R Astron Soc. 2003;345:16–38.

    Article  CAS  Google Scholar 

  39. Leea HJ, Choa YR, Kimb IH. Synthesis of thermoelectric Mg2Si by a solid state reaction. J Ceram Process Res. 2011;12(1):16–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vourlias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stathokostopoulos, D., Chaliampalias, D., Pavlidou, E. et al. Oxidation resistance of magnesium silicide under high-temperature air exposure. J Therm Anal Calorim 121, 169–175 (2015). https://doi.org/10.1007/s10973-015-4664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4664-3

Keywords

Navigation