Skip to main content
Log in

Thermal properties and application of silica gel waste contaminated with F ions for C-S-H synthesis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, an unconventional method for calcium silicate hydrate synthesis combining utilization of silica gel waste and immobilization of F ions in formed products, during hydrothermal treatment, was presented. The hydrothermal synthesis of calcium silicate hydrates was performed for 4, 8, 16, 24, 48 and 72 h at 200 °C when the molar ratio of the primary CaO/SiO2 mixtures was 0.83. It was estimated that F ions were bound into a calcium fluoride during hydrothermal synthesis, because the concentration of these ions in the synthesis solution was not higher than 10 ppm. It was determined that the mechanism of hydrothermal reactions and the sequence of the compounds formed in CaO–silica gel waste–H2O mixtures are quite different from that in pure mixtures because part of the CaO reacts with F and Al3+ ions and forms calcium fluoride and hydrogarnet, respectively. The obtained results were confirmed by the thermodynamic calculations and instrumental analysis data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Melo CR, Angioletto E, Riella HG, Peterson M, Rocha MR, Melo AR, Silva L, Strugale S. Production of metakaolin from industrial cellulose waste. J Therm Anal Calorim. 2012;109:1341–5.

    Article  CAS  Google Scholar 

  2. Wajima T, Rakovan JF. Removal of fluoride ions using calcined paper sludge. J Therm Anal Calorim. 2013;113:1027–35.

    Article  CAS  Google Scholar 

  3. Teixeira S, Monteiro E, Silva V, Rouboa A. Prospective application of municipal solid wastes for energy production in Portugal. Energy Policy. 2014;71:159–68.

    Article  Google Scholar 

  4. Angin D. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions. Bioresour Technol. 2014;168:259–66.

    Article  CAS  Google Scholar 

  5. Lua Z, Caib M. Disposal methods of solid wastes from mines in transition from open-pit to underground mining. Procedia Environ Sci. 2012;16:715–21.

    Article  Google Scholar 

  6. Park JY, Chertow MR. Establishing and testing the “reuse potential” indicator for managing wastes as resources. J Environ Manag. 2014;137:45–53.

    Article  Google Scholar 

  7. Yu R, Shui Z. Efficient reuse of the recycled construction waste cementitious materials. J Clean Prod. 2014;78:202–7.

    Article  CAS  Google Scholar 

  8. Kro D, Poskrobko S. Waste and fuels from waste. J Therm Anal Calorim. 2012;109:619–28.

    Article  Google Scholar 

  9. Zimmermann MVG, Zattera AJ. Recycling and reuse of waste from electricity distribution networks as reinforcement agents in polymeric composites. Waste Manag. 2013;33:1667–74.

    Article  CAS  Google Scholar 

  10. Sharma G, Pathania D, Naushad M, Kothiyal NC. Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water. Chem Eng J. 2014;251:413–21.

    Article  CAS  Google Scholar 

  11. Kanagaraj P, Nagendran A, Rana D, Matsuura T, Neelakandan S. Separation of macromolecular proteins and rejection of toxic heavy metal ions by PEI/cSMM blend UF membranes. Int J Biol Macromol. 2015;72:223–9.

    Article  CAS  Google Scholar 

  12. Li X, Du Y, Wu G, Li Z, Li H, Sui H. Solvent extraction for heavy crude oil removal from contaminated soils. Chemosphere. 2012;88:245–9.

    Article  CAS  Google Scholar 

  13. Lambert A, Drogui P, Daghrir R, Zaviska F, Benzaazoua M. Removal of copper in leachate from mining residues using electrochemical technology. J Environ Manag. 2014;133:78–85.

    Article  CAS  Google Scholar 

  14. Khan NA, Hasan Z, Jhung SH. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater. 2013;244–245:444–56.

    Article  Google Scholar 

  15. Awual MR, Hasan MM. Novel conjugate adsorbent for visual detection and removal of toxic lead(II) ions from water. Microporous Mesoporous Mater. 2014;196:261–9.

    Article  CAS  Google Scholar 

  16. Singha AS, Guleria A. Application of vinyl monomers functionalized cellulosic biopolymer for removal of dissolved toxic metal ions from polluted water samples. J Environ Chem Eng. 2014;2:1456–66.

    Article  CAS  Google Scholar 

  17. Awual MR, Hasan MM, Ihara T, Yaita T. Mesoporous silica based novel conjugate adsorbent for efficient selenium(IV) detection and removal from water. Microporous Mesoporous Mater. 2014;197:331–8.

    Article  Google Scholar 

  18. Sharma A, Lee BK. Cd(II) removal and recovery enhancement by using acrylamide–titanium nanocomposite as an adsorbent. Appl Surf Sci. 2014;313:624–32.

    Article  CAS  Google Scholar 

  19. Li K, Liang H, Qu F, Shao S, Yu H, Han Z, Du X, Li G. Control of natural organic matter fouling of ultrafiltration membrane by adsorption pretreatment: comparison of mesoporous adsorbent resin and powdered activated carbon. J Membr Sci. 2014;471:94–102.

    Article  CAS  Google Scholar 

  20. Rad LR, Momeni A, Ghazani BF, Irani M, Mahmoudi M, Noghreh B. Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chem Eng J. 2014;256:119–27.

    Article  CAS  Google Scholar 

  21. Gusmão KAG, Gurgel LVA, Melo TMS, Carvalho CF, Gil LF. Adsorption studies of etherdiamine onto modified sugarcane bagasses in aqueous solution. J Environ Manag. 2014;133:332–42.

    Article  Google Scholar 

  22. Bankauskaite A, Baltakys K, Eisinas A, Zadaviciute S. Study on adsorption of heavy metal ions in wastewater by synthetic layered inorganic adsorbents. Desalin Water Treat (in press), available online 26 Aug 2014; doi: 10.1080/19443994.2014.951074.

  23. Mostafa NY, Kishar EA, Abo-El-Enein SA. FTIR study and cation exchange capacity of Fe3+- and Mg2+-substituted calcium silicate hydrates. J Alloys Compd. 2009;473:538–42.

    Article  CAS  Google Scholar 

  24. Vespa M, Dähn R, Wieland E. Competition behaviour of metal uptake in cementitious systems: an XRD and EXAFS investigation of Nd- and Zn-loaded 11 Å tobermorite. Phys Chem Earth. 2014;70–71:32–8.

    Article  Google Scholar 

  25. Baltakys K, Eisinas A, Dizhbite T, Jasina L, Siauciunas R, Kitrys S. The influence of hydrothermal synthesis conditions on gyrolite texture and specific surface area. Mater Struct. 2011;44:1687–701.

    Article  CAS  Google Scholar 

  26. Baltakys K, Siauciunas R. Gyrolite formation in CaO–SiO2·nH2O–γ–Al2O3–Na2O–H2O system under hydrothermal conditions. Pol J Chem. 2007;81:103–14.

    CAS  Google Scholar 

  27. Baltakys K, Eisinas A, Barauskas I, Prichockienė E, Zaleckas E. Removal of Zn(II), Cu(II) and Cd(II) from aqueous solution using gyrolite. J Sci Ind Res. 2012;71:566–72.

    CAS  Google Scholar 

  28. Bankauskaitė A, Baltakys K. The sorption of copper ions by gyrolite in alkaline solution. Mater Sci Pol. 2009;27(3):899–908.

    Google Scholar 

  29. Napia C, Sinsiri T, Jaturapitakkul C, Chindaprasirt P. Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binder. Waste Manag. 2012;32:1459–67.

    Article  CAS  Google Scholar 

  30. Eisinas A, Baltakys K, Siauciunas R. The effect of gyrolite additive on the hydration properties of Portland cement. Cem Concr Res. 2012;42:27–38.

    Article  CAS  Google Scholar 

  31. Eisinas A, Baltakys K, Siauciunas R. Utilization of gyrolite with impure Cd2+ ions in cement stone. Adv Cem Res. 2013;25:69–79.

    Article  CAS  Google Scholar 

  32. Antonovič V, Aleknevičius M, Kerienė J, Pundienė I, Stonys R. Investigating the hydration of deflocculated calcium aluminate cement-based binder with catalyst waste. J Therm Anal Calorim. 2012;109:537–44.

    Article  Google Scholar 

  33. Richardson IG. The calcium silicate hydrates. Cem Concr Res. 2008;38:137–58.

    Article  CAS  Google Scholar 

  34. Baltakys K, Eisinas A, Siauciunas R. The effect of gyrolite substituted with cadmium ions on the hydration kinetics of OPC at early stages. Adv Cem Res (in press), available online 22 March 2014; doi: 10.1680/adcr.13.00048.

  35. Aлeкин OA. Xимичecкий aнaлиз вoд cyши– (пpи cтaциoнapнoм иxизyчeнии). Гидpoмeтeopoлoгичecкoe изд-вo; 1954.

  36. Iljina A, Baltakys K, Baltakys M, Siauciunas R. Neutralization and removal of compounds containing fluoride ions from waste silica gel. Roman J Mater. 2014;44(3):265–71.

    CAS  Google Scholar 

  37. Baltakys K. Influence of gypsum additive on the formation of calcium silicate hydrates in mixtures with C/S = 0.83 or 1.0. Mater Sci Pol. 2009;27(41):1091–101.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a Grant (No. MIP—025/2014) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kestutis Baltakys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltakys, K., Iljina, A. & Bankauskaite, A. Thermal properties and application of silica gel waste contaminated with F ions for C-S-H synthesis. J Therm Anal Calorim 121, 145–154 (2015). https://doi.org/10.1007/s10973-015-4663-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4663-4

Keywords

Navigation