Skip to main content
Log in

Waste and fuels from waste

Part I. Analysis of thermal decomposition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetric studies provide the basis for qualification of materials and suitability of biomass fuels and fuels formed from waste to convert them into fuel gas generated in the generator process. The paper presents the results of the analysis of thermal decomposition (thermogravimetric research) of fuel from waste, sewage sludge and wastes from the agro-food: potato pulp and rapeseed meal. Studies have shown how some biofuels and fuel formed from waste reach the semi-coke and coke structure, which is important later, in modeling industry degassing process. The most effective seems to be using rapeseed meal in generator process, since the thermal decomposition occurs in the form of transformation in the temperature range 200–500 °C. On the basis of quantity analysis of gaseous transformation products from the above mentioned transformations, the calorific value of after process gases has been calculated. The highest calorific value is represented by a gas resulting from rapeseed meal pyrolysis ~10,040 kJ/Nm3. The solid residue obtained by dry decomposition of potato pulp has the highest energy value when compared with products from other fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kök MV. An investigation into the combustion curves of lignites. J Therm Anal Calorim. 2001;64:1319–23.

    Article  Google Scholar 

  2. Kök MV. Non-isothermal DSC and TG/DTG analysis of the combustion of silopi asphaltites. J Therm Anal Calorim. 2007;88(3):663–8.

    Article  Google Scholar 

  3. Aylón E, Callèn MS, López JM, Mastral AM, Murillo R, Navarro MV, Stelmach S. Assessment of tire devolatilization kinetics. J Anal Appl Pyrol. 2005;74:259.

    Article  Google Scholar 

  4. Gonzàlez JF, Encinar JM, Canito JL, Rodrìguez JJ. Pyrolysis of automobile tyre waste. Influence of operating variables and kinetic study. J Anal Appl Pyrol. 2001;58-59:667.

    Article  Google Scholar 

  5. Williams PT, Besler S. Pyrolysis-thermogravimetric analysis of tyres and tyre components. Fuel. 1995;74:1277–83.

    Article  CAS  Google Scholar 

  6. Sułkowski WW, Danch A, Moczyński M, Radoń A, Sułkowska A, Borek J. Thermogravimetric study of rubber waste-polyurethane composites. J Therm Anal Calorim. 2004;78:905–21.

    Google Scholar 

  7. Rybiński P, Janowska G, Kucharska-Jastrząbek A, Pająk A, Wójcik I, Wesołek D, Bujnowicz K. Flammability of vulcanizates of diene rubbers. J Therm Anal Calorim. 2010;. doi:10.1007/s10973-011-1728-x.

    Google Scholar 

  8. Galvagno S, Casu S, Martino M, Di Palma E, Portofino S. Thermal and kinetic study of tyre waste pyrolysis via TG–FTIR–MS analysis. J Therm Anal Calorim. 2007;88(2):507–14.

    Article  CAS  Google Scholar 

  9. Dispenza C, Spadaro G. Cure kinetics of a tetrafunctional rubber modified epoxy-amine system. J Therm Anal Calorim. 2000;61:579–87.

    Article  CAS  Google Scholar 

  10. Molto J, Font R, Conesa J. Kinetic model of the decomposition of a PET fibre cloth in an inert and air environment. J Anal Appl Pyrolysis. 2007;79:289–96.

    Article  CAS  Google Scholar 

  11. Burlett DI. Thermal techniques to study complex elastomer/filler systems. J Therm Anal Calorim. 2004;75:531–44.

    Article  CAS  Google Scholar 

  12. Benavides R, Castillo BM, Castaneda AO, Lopez GM, Arias G. Different thermo-oxidative degradation routes in poly(vinyl chloride). Polym Degrad Stab. 2001;73:417–23.

    Article  CAS  Google Scholar 

  13. Di Nola G, de Jong W, Spliethoff H. TG–FTIR characterisation of coal and biomass single fuels and blends under slow heating rate conditions: partitioning of the fuel-bound nitrogen. Fuel Process Technol. 2010;91:103–15.

    Article  Google Scholar 

  14. Stolarek P, Ledakowicz S. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion. Water Sci Technol. 2001;44(10):333–9.

    CAS  Google Scholar 

  15. Font R, Fullana A, Conesa JA, Lavador F. Analysis of the pyrolysis and combustion of different sewage sludges by TG. J Anal Appl Pyrolysis. 2001;58:927–41.

    Article  Google Scholar 

  16. Gomez-Rico MF, Font R, Fullana A, Martin-Gullon I. Thermogravimetric study of different sewage sludges and their relationship with the nitrogen content. J Anal Appl Pyrolysis. 2005;74:421–8.

    Article  Google Scholar 

  17. Shen L, Zhang DK. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed. Fuel. 2003;82(4):465–72.

    Article  CAS  Google Scholar 

  18. Yang H, Yan R, Chen H, Lee HD, Liang DT, Zheng C. In-depth investigation of biomass pyrolysis based on three major components:hemicellulose, cellulose and lignin. Energy Fuels. 2006;20(1):388–93.

    Article  CAS  Google Scholar 

  19. Arenillas A, Pevida C, Rubiera F, Garcia R, Pis JJ. Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal. J Anal Appl Pyrolysis. 2004;71(2):747–63.

    Article  CAS  Google Scholar 

  20. Fang MX, Shen DK, Li YX, Yu CJ, Luo ZY, Cen KF. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG–FTIR analysis. J Anal Appl Pyrolysis. 2006;77(1):22–7.

    Article  CAS  Google Scholar 

  21. Otero M, Diez C, Calvo LF, Garcia AI, Moran A. Analysis of the co-combustion of sewage sludge and coal by TG–MS. Biomass Bioenergy. 2002;22(4):319–29.

    Article  CAS  Google Scholar 

  22. Karayildirim T, Yanik J, Yuksel M, Bockhorn H. Characterisation of products from pyrolysis of waste sludges. Fuel. 2006;85:1498–508.

    Article  CAS  Google Scholar 

  23. Shao J, Yan R, Chen H, Wang B, Lee DH, Liang DT. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry Fourier transform infrared analysis. Energy Fuels. 2008;22:38–45.

    Article  CAS  Google Scholar 

  24. Heikkinen J, Spliethoff H. Waste mixture composition by thermogravimetric analysis. J Therm Anal Calorim. 2003;72:1031–9.

    Article  CAS  Google Scholar 

  25. Yang Y, Tan L, Jin S, Lin Y, Yang H. Catalytic pyrolysis of tobacco rob: kinetic study and fuel gas produced. Bioresour Technol. 2011;102:11027–33.

    Article  CAS  Google Scholar 

  26. Cheng G, Zhang L, He P, Yan F, Bo Xiao B, Tao Xu T, Jiang Ch, Zhang Y, Guo D. Pyrolysis of ramie residue: kinetic study and fuel gas produced in a cyclone furnace. Bioresour Technol. 2011;102:3451–6.

    Article  CAS  Google Scholar 

  27. Cheng G, Zhang L, He P, Yan F, Xiao B, Xu T, Jiang Ch, Zhang Y, Guo D. Pyrolysis of ramie residue: kinetic study and fuel gas produced in a cyclone furnace. Bioresour Technol. 2011;102:3451–6.

    Article  CAS  Google Scholar 

  28. Hwang IH, Matsuto T, Tanaka N, Sasaki Y, Tanaami K. Characterization of char derived from various types of solid waste from the standpoint of fuel recovery and pretreatment before landfilling. Waste Manag (Oxford). 2007;27:1155–66.

    Article  CAS  Google Scholar 

  29. Kantarelis E, Zabaniotou A. Valorization of cotton stalks by fast pyrolysis and fixed bed air gasification for syngas production as precursor of second generation biofuels and sustainable agriculture. Bioresour Technol. 2009;100:942–7.

    Article  CAS  Google Scholar 

  30. Karayildirim T, Yanik J, Yuksel M, Bockhorn H. Characterisation of products from pyrolysis of waste sludges. Fuel. 2006;85:1498–508.

    Article  CAS  Google Scholar 

  31. Avenell ChS, Sainz-Diaz CI, Griffitchs AJ. Solid waste pyrolysis in pilot-scale batch pyrolyser. Fuel. 1996;75:1167–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Higher Education, Poland, Grant No.R0601802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danuta Król.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Król, D., Poskrobko, S. Waste and fuels from waste. J Therm Anal Calorim 109, 619–628 (2012). https://doi.org/10.1007/s10973-012-2397-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2397-0

Keywords

Navigation