Skip to main content
Log in

The effect of internal lipids on the water sorption kinetics of keratinised tissues

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Water has a large influence on the properties of keratinised tissues. The water diffusion properties of keratinised tissues are known to be governed by the cell membrane complex, which is mainly composed of internal lipids. The main aim of this work was to characterise the differences in the water sorption and desorption behaviour of human hair and stratum corneum (SC) both with and without internal lipids. Absorption and desorption curves were obtained using a thermogravimetric balance equipped with a controlled humidity chamber. The results demonstrate that the role of the intercellular lipids in the SC is more marked than in hair, which is likely due to the greater amount of lipids present in its structure. Therefore, lipid structures in the SC are essential both to prevent changes in the water-holding capacity of the skin and to maintain the water permeability of the SC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rivett D. Structural lipids of the wool fibre. Wool Sci Rev. 1991;67:1–25.

    Google Scholar 

  2. Clarence R. Chemical and physical behaviour of human hair. New York: Springer; 2012.

    Google Scholar 

  3. Coderch L, Bondía I, Fonollosa J, Méndez S, Parra J. Ceramides from wool: analysis and structure. IFSCC Mag. 2003;6:117–23.

  4. Schaefer H, Redemeier TE. Skin barrier: principles in percutaneous penetration. Basel: Karger; 1996. p. 55–8.

  5. Scürer NY. The biochemistry and function of stratum corneum lipids. Adv Lipid Res. 1991;24:27–56.

    Google Scholar 

  6. Kerscher M, Korting H, Scharfer-Korting M. Skin ceramides: structure and function. Eur J Dermatol. 1991;1:39–43.

    CAS  Google Scholar 

  7. Coderch L, Soriano S, de la Maza A, Erra P, Parra JL. Chromatographic characterization of internal polar lipids from wool. J Am Oil Chem Soc. 1995;72:1715–20.

    Article  Google Scholar 

  8. Elias PM, Friend DS. The permeability barrier in mammalian epidermis. J Cell Biol. 1975;65(1):180–91.

    Article  CAS  Google Scholar 

  9. Elias PM, Goerke J, Friend DS. Mammalian epidermal barrier layer lipids: composition and influence on structure. J Invest Dermatol. 1977;69(6):535–46.

    Article  CAS  Google Scholar 

  10. Elias PM. Lipids and the epidermal permeability barrier. Arch Dermatol Res. 1981;270(1):95–117.

    Article  CAS  Google Scholar 

  11. Petersen R. Ceramides: key components for skin protection. Cosmet Toilet. 1992;107:45–9.

    CAS  Google Scholar 

  12. Choi M, Maibach H. Role of ceramides in barrier function of healthy and diseased skin. Am J Clin Dermatol. 2005;6(4):215–33.

    Article  Google Scholar 

  13. Nishimura K, Nishino I, Inaoka Y, Kitada Y, Fukushima K. Interrelationship between the hair lipids and the hair moisture. Nippon Koshohin Kagakkaishi. 1989;13:134–9.

    CAS  Google Scholar 

  14. Barba C, Martí M, Carilla J, Manich A, Coderch L. Moisture sorption/desorption of protein fibres. Thermochim Acta. 2013;552:70–6.

    Article  CAS  Google Scholar 

  15. Manich AM, Maldonado F, Carilla J, Catalina M, Marsal A. Moisture adsorption/desorption kinetics of bovine hide powder. J Soc Leather Technol Chem. 2010;94:15–20.

    CAS  Google Scholar 

  16. Pierlot AP. Water in wool. Text Res J. 1999;69(2):97–103.

    Article  CAS  Google Scholar 

  17. Rosenbaum S. Solution of water in polymers: the keratin-water isotherm. J Polym Sci Part C Polym Symp. 1970;31(1):45–55.

    Article  Google Scholar 

  18. Timmermann EO. Multilayer sorption parameters: BET or GAB values? Colloids Surf A. 2003;220(1):235–60.

    Article  CAS  Google Scholar 

  19. Godin B, Touitou E. Transdermal skin delivery: predictions for humans fromin vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59:1152–61.

    Article  CAS  Google Scholar 

  20. Mothe CG, Mothe MG, Riga A, Alexander K. Thermal analysis of a model bio-membrane Human and snake skins. J Therm Anal Calorim. 2011;106:637–42. doi:10.1007/s10973-011-1812-2.

    Article  CAS  Google Scholar 

  21. Hasanovic A, Winkler R, Resch GP, Valenta V. Modification of the conformational skin structure by treatment with liposomal formulations and its correlation to the penetration depth of aciclovir. Eur J Pharm Biopharm. 2011;79(1):76–81.

    Article  CAS  Google Scholar 

  22. Sekkat N, Guy R. Biological models to study skin permeation. Zurich: Wiley-VCH and VHCA; 2001.

    Book  Google Scholar 

  23. Barba C, Baratto A, Martia M, Semenzato A, Baratto G, Manich AM, Parra JL, Coderch L. Water sorption evaluation of stratum corneum. Thermochim Acta. 2014;583:43–8.

    Article  CAS  Google Scholar 

  24. Lopez O, Cocera M, Wertz PW, Lopez-Iglesias C, de la Maza A. New arrangement of proteins and lipids in the stratum corneum cornified envelope. Biochim Biophys Acta. 2007;1768(3):521–9.

    Article  CAS  Google Scholar 

  25. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(2):309–19.

    Article  CAS  Google Scholar 

  26. Anderson RB, Hall WK. Modifications of the Brunauer, Emmett and Teller Equation II1. J Am Chem Soc. 1948;70(5):1727–34.

    Article  CAS  Google Scholar 

  27. Vickerstaff T. The physical chemistry of dyeing. London: Oliver and Boid; 1954.

    Google Scholar 

  28. Mullen R, Donna L, Chen S, Koelmel D, Zhang G, Gillece T. Determination of physicochemical properties of delipidized hair. J Cosmet Sci. 2013;64:355–70.

    Google Scholar 

  29. Hill C, Norton A, Newman G. The water vapour sorption behaviour of natural fibers. J Appl Pol Sci. 2009;112:1524–37.

    Article  CAS  Google Scholar 

  30. Watt IJ. Determination of diffusion rates in swelling systems. Appl Polym Sci. 1964;8:2835–42.

    Article  CAS  Google Scholar 

  31. Heldman DR, Hall CW, Hedrick I. Vapor equilibrium relationships of dry milk. J Dairy Sci. 1965;48:845–52.

    Article  CAS  Google Scholar 

  32. Al-Muhtaseb AH, McMinn WAM, Magee TRA. Water sorption isotherms of starch powders part 1: mathematical description of experimental data. J Food Eng. 2004;61:297–307.

    Article  Google Scholar 

  33. Gelb L, Gubbins K. Characterization of porous glasses: simulation models, adsorption isotherms, and the Brunauer–Emmett–Teller analysis method. Langmuir. 1998;14:2097–111.

    Article  CAS  Google Scholar 

  34. Okubayashi S, Griesser UJ, Bechtold T. A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym. 2004;58(3):293–9.

    Article  CAS  Google Scholar 

  35. Ananthapadmanabhan KP, Moore DJ, Subramanyan K, Misra M, Meyer F. Cleansing without compromise: the impact of cleansers on the skin barrier and the technology of mild cleansing. Dermatol Ther. 2004;17(Suppl 1):16–25.

    Article  Google Scholar 

  36. Gabas AL, Oliveira WP, Telis-Romero J. Study of adsorption isotherms of green coconut pulp Estudo das isotermas de adsorção da polpa de coco verde. Food Sci Technol Campinas. 2013;33(1):68–74.

    Article  Google Scholar 

  37. Molina Filho L, Gonçalvesi A, Mauro M, Fraccareli E. Moisture sorption isotherms of fresh and blanched pumpkin (Cucurbita moschata) Isotermas de sorção de umidade de abóbora (Cucurbita moschata) fresca e branqueada. Technol Aliment Campinas. 2011;31(3):714–22.

    Article  Google Scholar 

  38. Alber C, Brandner BD, Björrklund S, Billsten S, Corkery RW, Engblom J. Effects of water gradients and use of urea on skin ultrastructure evaluated by confocal Raman microspectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2013;11:2470–8.

    Article  Google Scholar 

  39. Nakazawa H, Ohta N, Hatta I. A possible regulation mechanism of water content in human stratum corneum via intercellular lipid matrix. Chem Phys Lipids. 2012;165(2):238–43.

    Article  CAS  Google Scholar 

  40. Björklund S, Andersson JM, Pham QD, Nowacka A, Topgaard D, Sparr E. Stratum corneum molecular mobility in the presence of natural moisturizers. Soft Matters. 2014;10:4535–46.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Spanish National Projects (Ministerio de Educación y Ciencia) CTQ2013-44998-P and 2014 SGR 1325 (AGAUR) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Barba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barba, C., Martí, M., Carilla, J. et al. The effect of internal lipids on the water sorption kinetics of keratinised tissues. J Therm Anal Calorim 123, 2013–2020 (2016). https://doi.org/10.1007/s10973-015-4649-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4649-2

Keywords

Navigation