Skip to main content
Log in

The influence of aluminum additive on the α-C2S hydrate formation process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of aluminum additive on the formation of α-C2SH and on kinetics of cementitious binder material at early stages of hydration was determined. α-C2SH was synthesized in the primary mixtures with CaO/(SiO2 + Al2O3) = 1.5 and Al2O3/(SiO2 + Al2O3) = 0; 0.025 and 0.05. The hydrothermal synthesis has been carried out in unstirred suspensions under saturated steam pressure in argon atmosphere at 175 °C temperature for 4, 8;,16, 24, 48 and 72 h by applying extra argon gas (10 bar). It was determined that in CaO–SiO2·nH2O–H2O suspensions within 4 h dicalcium silicate hydrates—α-C2S hydrate, C–S–H(II) and a low base semi-crystalline C–S–H(I) type calcium silicate hydrate—were formed. Meanwhile, Al2O3 additive changes the formation mechanism of synthesis products as well as their stability during the isothermal curing. It was observed that hydrogarnets formed after 4 h of hydrothermal treatment remained stable under all experimental conditions. It was determined that the addition of α-C2SH–Al in BM sample changed both the heat flow and the total quantity of heat released during early-stage hydration. It was determined that only 5 % of quartz reacts during the first 4.5 h of hydration in both BM samples, and the further reduction of its quantity depends on duration of process. The products of synthesis and hardening were characterized by simultaneous thermal analysis, microcalorimetry and X-ray diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu Z, Wang Z, Yuan MZ, Yu HB. Thermal efficiency modelling of the cement clinker manufacturing process. J Energy Inst. 2014. doi:10.1016/j.joei.2014.04.004.

    Google Scholar 

  2. Khurana S, Banerjee R, Gaitonde U. Energy balance and cogeneration for a cement plant. Appl Therm Eng. 2002;22:485–94.

    Article  CAS  Google Scholar 

  3. Madlool NA, Saidur R, Hossain MS, Rahim NAA. Critical review on energy use and savings in the cement industries. Renew Sustain Energy Rev. 2011;15(4):2042–60.

    Article  Google Scholar 

  4. Benhelal E, Zahedi G, Shamsaei G, Bahadori A. Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod. 2013;51:142–61.

    Article  Google Scholar 

  5. Swanepoel JA, Mathews EH, Vosloo J, Liebenberg L. Integrated energy optimisation for the cement industry: a case study perspective. Energ Convers Manage. 2014;78:765–75.

    Article  Google Scholar 

  6. Peng J, Huang L, Zhao Y, Chen P, Zeng L, Zheng W. Modeling of carbon dioxide measurement on cement plants. Adv Mater Res. 2013;610–613:2120–2128.

  7. Li C, Gong X, Cui S, Wang Z, Zheng Y, Chi B. CO2 emissions due to cement manufacture. Mater Sci Forum. 2011;685:181–7.

    Article  CAS  Google Scholar 

  8. Turner KL, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater. 2013;43:125–30.

    Article  Google Scholar 

  9. Kacimi L, Martin C, Clastres P. Synthesis of α’ L-C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure. J Hazard Mater. 2010;181(2):593–601.

    Article  CAS  Google Scholar 

  10. Bell NS, Venigalla S, Gill PM, Adair JH. Morphological forms of tobermorite in hydrothermally treated calcium silicate hydrate gels. J Am Ceram Soc. 1996;79(8):2175–8.

    Article  CAS  Google Scholar 

  11. Baltakys K, Siauciunas R. Formation of gyrolite in the CaO–quartz–Na2O–H2O system. Mater Sci Pol. 2007;25(4):1089–100.

    CAS  Google Scholar 

  12. Richardson IG. The calcium silicate hydrates. Cem Concr Res. 2008;38(2):137–58.

    Article  CAS  Google Scholar 

  13. Zhang X, Chang W, Zhang T, Ong CK. Nanostructure of calcium silicate hydrate gels in cement paste. J Am Ceram Soc. 2000;83(10):2600–4.

    Article  CAS  Google Scholar 

  14. Hara N, Chan CF, Mitsuda T. Formation of 14 Å tobermorite. Cem Concr Res. 1978;8(1):113–5.

    Article  CAS  Google Scholar 

  15. Stemmermann P, Schweike U, Garbev K, Beuchle G. Celitement—a sustainable prospect for the cement industry. Cem Int. 2010;8:52–66.

    Google Scholar 

  16. Stemmermann P, Beuchle G, Garbev K, Schweike U. Celitement®—A new sustainable hydraulic binder based on calcium hydrosilicates. Proceedings of the 13th International Congress on the chemistry of cement. 2011; 158.

  17. Baltakys K, Dambrauskas T, Siauciunas R, Eisinas A. α-C2SH synthesis in the mixtures with CaO/SiO2 = 1.5 and application as a precursor for binder material. Adv Cem Res. 2014; Submitted.

  18. Taylor HFW, Bessey GE. Review of hydrothermal reactions in the system lime-silica-water. Mag Concr Res. 1950;2(4):15.

    Article  Google Scholar 

  19. Heller L. The structure of dicalcium silicate α-hydrate. Acta Crystallogr. 1952;5(6):724.

    Article  CAS  Google Scholar 

  20. Kalousek GL, Logiudice JS, Dodson VH. Studies on the lime-rich crystalline solid phases in the system lime-silica-water. J Am Ceram Soc. 1954;37(1):7.

    Article  CAS  Google Scholar 

  21. Taylor HFW. The calcium silicate hydrates. In: Taylor HFW, editor. The chemistry of cements. London: Academic Press; 1964. p. 167.

    Google Scholar 

  22. Imlach BV, Taylor HFW. Prolonged hydrothermal treatment of cement mixes I. Curing in water under saturated steam pressure at 140–170°C. Brit Ceram Trans J. 1972;71(1):71.

    CAS  Google Scholar 

  23. Mitsuda T, Kobayakawa S, Toraya H. Characterization of hydrothermally formed CSH. The 8th International Congress on the Chemistry of Cement, Rio de Janeiro. 1986; 3:176.

  24. Ishida H, Yamazaki S, Sasaki K, Okada Y, Mitsuda T. α-Dicalcium silicate hydrate—preparation, decomposed phase, and its hydration. J Am Ceram Soc. 1993;76(7):1707.

    Article  CAS  Google Scholar 

  25. Garbev K, Gasharova B, Beuchle G, Kreisz S. First observation of α-Ca2[SiO3(OH)](OH)-Ca6[Si2O7][SiO4](OH)2 phase transformation upon thermal treatment in air. J Am Ceram Soc. 2008;91(1):263.

    Article  CAS  Google Scholar 

  26. Baltakys K, Dambrauskas T, Siauciunas R, Eisinas A. Formation of α-C2S hydrate in the mixtures with CaO/SiO2 = 1.75 by hydrothermal treatment at 200 °C. Rom J Mater. 2014;44(1):109–15.

    CAS  Google Scholar 

  27. Baltakys K, Siauciunas R. Influence of gypsum additive on the gyrolite formation process. Cem Concr Res. 2010;40(3):376–83.

    Article  CAS  Google Scholar 

  28. Baltakys K, Siauciunas R. The influence of γ-Al2O3 and Na2O on the formation of calcium silicate hydrates in the CaO–quartz–H2O system. Mater Sci Pol. 2007;25(1):185–98.

    CAS  Google Scholar 

  29. Bullard JW, Jennings HM, Livingston RA, Nonat A, Scherer GW, Schweitzer JS, Scrivener KL, Thomas JJ. Mechanisms of cement hydration. Cem Concr Res. 2011;41:1208–23.

    Article  CAS  Google Scholar 

  30. Mostafa NY, Brown PW. Heat of hydration of high reactive pozzolans in blended cements: isothermal conduction calorimetry. Thermochim Acta. 2005;435:162–7.

    Article  CAS  Google Scholar 

  31. Melchert MBM, Viana MM, Lemos MS, Dweck J, Buechler PM. Simultaneous solidification of two catalyst wastes and their effect on the early stages of cement hydration. J Therm Anal Calorim. 2011;105(2):625–33.

    Article  CAS  Google Scholar 

  32. Chaipanich A, Nochaiya T. Thermal analysis and microstructure of Portland cement-fly ash-silica fume pastes. J Therm Anal Calorim. 2010;99(2):487–93.

    Article  CAS  Google Scholar 

  33. Gruyaert E, Robeyst N, De Belie N. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J Therm Anal Calorim. 2010;102(3):941–51.

    Article  CAS  Google Scholar 

  34. Dweck J, Ferreira da Silva PF, Buechler PM, Cartledge FK. Study by thermogravimetry of the evolution of ettringite phase during type II Portland cement. J Therm Anal Calorim. 2002;69(1):179–86.

    Article  CAS  Google Scholar 

  35. Siauciunas R, Mikaliunaite J, Urbonas L, Baltakys K. Tribochemical and thermal activation of α-C2S hydrate as precursor for cementitious binders. J Therm Anal Calorim. 2014. doi:10.1007/s10973-014-3921-1.

    Google Scholar 

  36. De Weerdt K, Ben Haha M, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res. 2011;41(3):279–91.

    Article  Google Scholar 

  37. Pacewska B, Wilinska I, Bukowska M. Hydration of cement slurry in the presence of spent cracking catalyst. J Therm Anal Calorim. 2000;60(1):71–8.

    Article  CAS  Google Scholar 

  38. Shi C, Dau RL. Some factors affecting early hydration of alkalislag cements. Cem Concr Res. 1999;26:439–47.

    Article  Google Scholar 

  39. Gruyaert E, Robeyst N, De Belie N. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J Therm Anal Calorim. 2010;102:941–51.

    Article  CAS  Google Scholar 

  40. Evju C. Initial hydration of cementitious systems using a simple isothermal calorimeter and dynamic correction. J Therm Anal Calorim. 2003;71:829–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a Grant (No. MIP – 025/2014) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Baltakys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltakys, K., Eisinas, A. & Dambrauskas, T. The influence of aluminum additive on the α-C2S hydrate formation process. J Therm Anal Calorim 121, 75–84 (2015). https://doi.org/10.1007/s10973-015-4591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4591-3

Keywords

Navigation