Skip to main content
Log in

Simultaneous DSC and TG analysis of high-performance concrete containing natural zeolite as a supplementary cementitious material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Natural zeolite is a pozzolan active material used as a supplementary cementitious material to improve the final properties of concrete. In this paper, the thermal properties of hardened high-performance concrete containing natural zeolite in the amount varying from 0 to 60 mass % of the cement binder are studied. Using the differential scanning calorimetry and thermogravimetry, the hydration and pozzolanic reaction in the concrete are investigated in dependence on the amount of the added natural zeolite. The investigation is performed in the temperature range from 25 to 1000 °C with a rate 5 °C min−1 in an argon atmosphere. We found out that the temperature and enthalpy of liberation of physically bound water, C–S–H gels, and ettringite decomposition (all occurring from 50 to 300 °C) almost do not change with an amount of the natural zeolite in the studied samples. On the other hand, for portlandite (420–510 °C) and calcite decomposition (580–800 °C), they decrease with an amount of the natural zeolite. Finally, the last modification at temperature about 857 °C was attributed to the crystallization of wollastonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Donatello S, Tyrer M, Cheeseman CR. Comparison of test methods to assess pozzolanic activity. Cement Concrete Comp. 2010;32:121–7.

    Article  CAS  Google Scholar 

  2. Malhotra VM, Mehta PK. Pozzolanic and cementitious materials. UK: Taylor & Francis; 1996.

  3. Breck DW. Zeolite molecular sieves: structure, chemistry, and use. New York: Wiley; 1973.

  4. Karakurt C, Kurama H, Topcu IB. Utilization of natural zeolite in aerated concrete production. Cement Concrete Comp. 2010;32:1–8.

    Article  CAS  Google Scholar 

  5. Virta RL. Zeolites. U.S. Geological Survey Minerals Yearbook; 2012.

  6. Poon CS, Lam L, Kou SC, Lin ZS. A study on the hydration rate of natural zeolite blended cement pastes. Constr Build Mater. 1999;13:427–32.

    Article  Google Scholar 

  7. Gervais C, Ouki SK. Performance study of cementitious systems containing zeolite and silica fume: effects of four metal nitrates on the setting time, strength and leaching characteristics. J Hazard Mater. 2002;93:187–200.

    Article  CAS  Google Scholar 

  8. Karakurt C, Topcu IB. Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete. Constr Build Mater. 2011;25:1789–95.

    Article  Google Scholar 

  9. Janotka I, Krajči Ľ. Sulphate resistance and passivation ability of the mortar made from pozzolan cement with zeolite. J Therm Anal Calorim. 2008;94:7–14.

    Article  CAS  Google Scholar 

  10. Kontori E, Perraki T, Tsivilis S, Kakali G. Zeolite blended cements: evaluation of their hydration rate by means of thermal analysis. J Therm Anal Calorim. 2009;96:993–8.

    Article  CAS  Google Scholar 

  11. Valipour M, Pargar F, Shekarchi M, Khani S. Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: a laboratory study. Constr Build Mater. 2013;41:879–88.

    Article  Google Scholar 

  12. Perraki Th, Kakali G, Kontoleon F. The effect of natural zeolites on the early hydration of Portland cement. Micropor Mesopor Mater. 2003;61:205–12.

    Article  CAS  Google Scholar 

  13. Canpolat F, Yilmaz K, Kose MM, Sumer M, Yurdusev MA. Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production. Cement Concrete Res. 2004;34:731–5.

    Article  CAS  Google Scholar 

  14. Vogiatzis D, Kantiranis N, Filippidis A, Tzamos E, Sikalidis C. Hellenic natural zeolite as a replacement of sand in mortar: mineralogy monitoring and evaluation of its influence on mechanical properties. Geosciences. 2012;2:298–307.

    Article  CAS  Google Scholar 

  15. Jitchaiyaphum K, Sinsiri T, Jaturapitakkul Ch, Chindaprasirt P. Cellular lightweight concrete containing high-calcium fly ash and natural zeolite. Int J Min Met Mater. 2013;20:462–71.

    Article  CAS  Google Scholar 

  16. Vejmelková E, Keppert M, Ondráček M, Černý R. Effect of natural zeolite on the properties of high performance concrete. Cem Wapno Beton. 2013;18:150–9.

    Google Scholar 

  17. Ranjbar MM, Madandoust R, Mousavi SY, Yosefi S. Effects of natural zeolite on the fresh and hardened properties of self-compacted concrete. Constr Build Mater. 2013;47:806–13.

    Article  Google Scholar 

  18. Valipour M, Yekkalar M, Shekarchi M, Panahi S. Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments. J Clean Prod. 2014;65:418–23.

    Article  CAS  Google Scholar 

  19. Najimi M, Sobhani J, Ahmadi B, Shekarchi M. An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr Build Mater. 2012;35:1023–33.

    Article  Google Scholar 

  20. Karakurt C, Topcu IB. Effect of blended cements with natural zeolite and industrial by-products on rebar corrosion and high temperature resistance of concrete. Constr Build Mater. 2012;35:906–11.

    Article  Google Scholar 

  21. Dousti A, Rashetnia R, Ahmadi B, Shekarchi M. Influence of exposure temperature on chloride diffusion in concretes incorporating silica fume or natural zeolite. Constr Build Mater. 2013;49:393–9.

    Article  Google Scholar 

  22. Sabet FA, Libre NA, Shekarchi M. Mechanical and durability properties of self-consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Constr Build Mater. 2013;44:175–84.

    Article  Google Scholar 

  23. Valipour M, Pargar F, Shekarchi M, Khani S, Moradian M. In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment. Constr Build Mater. 2013;46:63–70.

    Article  Google Scholar 

  24. Trník A, Medveď I, Černý R. Measurement of linear thermal expansion coefficient of concrete at high temperatures: a comparison of isothermal and non-isothermal method. Cem Wapno Beton. 2012;17:363–72.

    Google Scholar 

  25. Castaldi P, Santona L, Cozza C, Giuliano V, Abbruzzese C, Nastro V, Melis P. Thermal and spectroscopic studies of zeolites exchanged with metal cations. J Mol Struct. 2005;734:99–105.

    Article  CAS  Google Scholar 

  26. Alver BE, Sakizci M, Yörükoğullari E. Investigation of clinoptilolite rich natural zeolites from Turkey: a combined XRF, TG/DTG, DTA and DSC study. J Therm Anal Calorim. 2010;100:19–26.

    Article  CAS  Google Scholar 

  27. Sha W, O’Neill EA, Guo Z. Differential scanning calorimetry study of ordinary Portland cement. Cement Concrete Res. 1999;29:1487–9.

    Article  CAS  Google Scholar 

  28. Sha W, Pereira GB. Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cement Concrete Comp. 2001;23:455–61.

    Article  CAS  Google Scholar 

  29. Heap MJ, Lavallée Y, Laumann A, Hess KU, Meredith PG, Dingwell DB, Huismann S, Weise F. The influence of thermal-stressing (up to 1000 °C) on the physical, mechanical, and chemical properties of siliceous-aggregate, high-strength concrete. Constr Build Mater. 2013;42:248–65.

    Article  Google Scholar 

  30. Esteves LP. On the hydration of water-entrained cement-silica systems: combined SEM, XRD and thermal analysis in cement pastes. Thermochim Acta. 2011;518:27–35.

    Article  CAS  Google Scholar 

  31. Janotka I. Hydration of the cement paste with Na2CO3 addition. Ceram-Silikaty. 2001;45:16–23.

    CAS  Google Scholar 

  32. Štubňa I, Trník A, Vozár L. Thermomechanical analysis of quartz porcelain in temperature cycles. Ceram Int. 2007;33:1287–91.

    Article  Google Scholar 

  33. Albayrak M, Yörükoğlu A, Karahan S, Atlıhan S, Aruntaş YH, Girgin I. Influence of zeolite additive on properties of autoclaved aerated concrete. Build Environ. 2007;42:3161–5.

    Article  Google Scholar 

  34. Rashid RA, Shamsudin R, Hamid MAA, Jalar A. Low temperature production of wollastonite from limestone and silica sandthrough solid-state reaction. J Asian Ceram Soc. 2014;2:77–81.

    Article  Google Scholar 

  35. Yazdani A, Rezaie HR, Ghassai H. Investigation of hydrothermal synthesis of wollastonite using silica and nano silica at different pressures. J Ceram Process Res. 2010;11:348–53.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Czech Science Foundation, Project No. P105/12/G059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Trník.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trník, A., Scheinherrová, L., Medveď, I. et al. Simultaneous DSC and TG analysis of high-performance concrete containing natural zeolite as a supplementary cementitious material. J Therm Anal Calorim 121, 67–73 (2015). https://doi.org/10.1007/s10973-015-4546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4546-8

Keywords

Navigation