Skip to main content
Log in

Peculiarities of the lattice thermal properties of rare-earth tetraborides

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature dependences of the a(T) and c(T) crystal structure parameters for HoB4 and ErB4 at temperatures of 5–300 K are experimentally investigated. Anomalies of these dependences for tetraborides studied at magnetic ordering temperatures were found for HoB4 T N1 = 5.7 K, T N2 = 7.1 K and for ErB4 T N1 = 15.4 K. The regular lattice a lat(T) and c lat(T) contribution to the thermal expansion of the rare-earth tetraborides studied in the present work and in the authors previous works were calculated. The temperature changes in the lattice components of the tetraborides thermal expansion, as well as their heat capacity of previous works of the authors, are considered within the Einstein and Debye approximations. The characteristic temperatures \(\theta _{{\rm Di}}, \theta _{{\rm E}}\) of the examined rare-earth tetraborides were found. A slight decrease in the characteristic temperatures for RB4 tetraborides was observed with an increase in the rare-earth metal atomic number in the Periodic Table, which is conditioned by the predominant effect of the R3+ ion mass on the lattice dynamics of the analyzed borides in comparison with the lanthanide reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Spear K. Phase behaviour and related properties of rare earth borides. In: Alper A, editor. Phase diagrams: materials science and technology, vol. 4. New York: Academic Press; 1976. p. 91–159.

    Chapter  Google Scholar 

  2. Sriram Shastry B, Sutherland B. Exact ground state of a quantum mechanical antiferromagnet. Phys B+C. 1981;108:1069–70.

    Article  Google Scholar 

  3. Will G, Schäfer W, Pfeiffer F, Elf F, Etourneau J. Neutron diffraction studies of TbB4 and ErB4. J Less Common Met. 1981;82:349–55.

    Article  CAS  Google Scholar 

  4. Buschow KHJ, Creyghton JHN. Magnetic properties of rare earth tetraborides. J Chem Phys. 1972;57:3910–4.

  5. Berrada A, Mercurio JP, Chevalier B, Etourneau J, Hagenmuller P, Lalanne M, et al. Synthese, cristallogenese, proprietes magnetiques et effets magnetostrictifs spontanes de quelques tetraborures de terres rares. Mater Res Bull. 1976;11:1519–26.

    Article  CAS  Google Scholar 

  6. Fisk Z, Maple MB, Johnston DC, Woolf LD. Multiple phase transitions in rare earth tetraborides at low temperature. Solid State Commun. 1981;39:1189–92.

    Article  CAS  Google Scholar 

  7. Watanuki R, Sato G, Suzuki K, Ishihara M, Yanagisawa T, Nemoto Y, et al. Geometrical quadrupolar frustration in DyB4. J Phys Soc Jpn. 2005;74:2169–72.

    Article  CAS  Google Scholar 

  8. Okuyama D, Matsumura T, Nakao H, Murakami Y. Quadrupolar frustration in Shastry–Sutherland lattice of DyB4 studied by resonant X-ray scattering. J Phys Soc Jpn. 2005;74:2434–7.

    Article  CAS  Google Scholar 

  9. Heiba Z, Schäfer W, Jansen E, Will G. Low-temperature structural phase transitions of TbB4 and ErB4 studied by high resolution X-ray diffraction and profile analysis. J Phys Chem Solids. 1986;47:651–8.

    Article  Google Scholar 

  10. Matsumura T, Okuyama D, Murakami Y. Non-collinear magnetic structure of TbB4. J Phys Soc Jpn. 2006;76:15001.

    Article  Google Scholar 

  11. Takashi S, Takahiro F, Ishii I, Michimura S, Iga F, Takabatake T. Elastic anomalies of TbB4 in pulsed high magnetic fields. J Phys Soc Jpn. 2011;80:042194.

    Google Scholar 

  12. Novikov VV, Mitroshenkov NV, Morozov AV, Matovnikov AV, Avdashchenko DV. Thermal properties of TbB4. J Therm Anal Calorim. 2013;113:779–85.

    Article  CAS  Google Scholar 

  13. Novikov VV, Mitroshenkov NV, Morozov AV, Matovnikov AV, Avdashchenko DV. Heat capacity and thermal expansion of gadolinium tetraboride at low temperatures. J Appl Phys. 2012;111:063907.

    Article  Google Scholar 

  14. Novikov VV, Mitroshenkov NV. Thermal expansion of dysprosium tetraboride. Phys Solid State. 2012;54:1186–90.

    Article  CAS  Google Scholar 

  15. Novikov VV, Morozov AV, Matovnikov AV, Avdashchenko DV, Polesskaya YN, Sakhoshko NV, et al. Low-temperature heat capacity of rare-earth tetraborides. Phys Solid State. 2011;53:1839–44.

    Article  CAS  Google Scholar 

  16. Yin ZP, Pickett WE. Rare-earth-boron bonding and 4f state trends in RB4 tetraborides. Phys Rev B. 2008;77:35135.

    Article  Google Scholar 

  17. Mukherjee G, Bansal C, Chatterjee A. Thermal expansion study of ordered and disordered Fe3Al: an effective approach for the determination of vibrational entropy. Phys Rev Lett. 1996;76:1876–9.

    Article  CAS  Google Scholar 

  18. Rogl G, Zhang L, Rogl P, Grytsiv A, Falmbigl M, Rajs D, et al. Thermal expansion of skutterudites. J Appl Phys. 2010;107:043507.

    Article  Google Scholar 

  19. Falmbigl M, Rogl G, Rogl P, Kriegisch M, Müller H, Bauer E, et al. Thermal expansion of thermoelectric type-I-clathrates. J Appl Phys. 2010;108:043529.

    Article  Google Scholar 

  20. Jennings LD, Miller RE, Spedding FH. Lattice heat capacity of the rare earths. Heat capacities of yttrium and lutetium from 15–350K. J Chem Phys. 1960;33:1849.

    Article  CAS  Google Scholar 

  21. Ramirez AP, Kowach GR. Large low temperature specific heat in the negative thermal expansion compound. Phys Rev Lett. 1998;80:4903–6.

    Article  CAS  Google Scholar 

  22. Sirota NN, Novikov VV, Vinokurov VA, Paderno JB. Low-temperature heat capacity and characteristic thermodynamic functions of lantanium hexaboride. Zhurnal Fizicheskoj Himii. 1998;72:1967–70.

    CAS  Google Scholar 

  23. Novikov VV, Matovnikov AV. Low-temperature heat capacity of dysprosium diboride. J Therm Anal Calorim. 2007;88:597–9.

    Article  CAS  Google Scholar 

  24. Novikov VV, Matovnikov AV. Low-temperature heat capacity and magnetic phase transition of TbB2. Inorg Mater. 2008;44:134–8.

    Article  CAS  Google Scholar 

  25. Tonnies JJ, Gschneidner KA, Spedding FH. Elastic moduli and thermal expansion of lutetium single crystals from 4.2 to 300K. J Appl Phys. 1971;42:327–335.

    Article  Google Scholar 

  26. Werheit H, Filipov V, Shitsevalova N, Armbrüster M, Schwarz U, Ievdokimova A, Muratov V, Gurin VN, Korsukova MM. Raman scattering in rare earths tetraborides. Solid State Sci. 2014;31:2432.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of the RF (State Assignment 3.105.2014/K for 2014-2016) and the RFBR (Grant 14-02-31692 \(\hbox {mol}\_\hbox {a}\)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Mitroshenkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, V.V., Mitroshenkov, N.V., Matovnikov, A.V. et al. Peculiarities of the lattice thermal properties of rare-earth tetraborides. J Therm Anal Calorim 120, 1597–1602 (2015). https://doi.org/10.1007/s10973-015-4475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4475-6

Keywords

Navigation