Skip to main content
Log in

Thermal behavior and decomposition of oxytetracycline hydrochloride

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behavior of oxytetracycline hydrochloride (OTC) antibiotic was evaluated using TG–DTA, TG–FTIR and DSC. Information was obtained regarding thermal stability and decomposition steps. From TG–FTIR, it was possible to identify some of the products of its thermal decomposition as chloridric acid, water, isocyanic acid, dimethylamine, methane, carbonic gas and ammonia, and carbon dioxide from the decomposition of the isocyanic acid. According to DSC data, melting occurred concomitantly with decomposition. The TG/DTG, DTA and DSC curves, together with the FTIR spectra of the volatile decomposition products, were used to propose a mechanism for oxytetracycline decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bannach G, Cervini P, Cavalheiro ETG, Ionashiro M. Using thermal and spectroscopic data to investigate the thermal behavior of epinephrine. Thermochim Acta. 2010;499:123–7.

    Article  CAS  Google Scholar 

  2. Bannach G, Arcaro R, Ferroni DC, Siqueira AB, Treu-Filho O, Ionashiro M, Schnitzler E. Thermoanalytical study of some anti-inflammatory analgesic agents. J Therm Anal Calorim. 2010;102:163–70.

    Article  CAS  Google Scholar 

  3. Giron D. Thermal-analysis and calorimetric methods in the characterization of polymorphs and solvates. Thermochim Acta. 1995;248:1–59.

    Article  CAS  Google Scholar 

  4. Silva ACM, Gálico DA, Guerra RB, Legendre AO, Rinaldo D, Galhiane MS, Bannach G. Study of some volatile compounds evolved from the thermal decomposition of atenolol. J Therm Anal Calorim. 2014;115:2517–20.

    Article  CAS  Google Scholar 

  5. Giordano F, Novak C, Moyano JR. Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta. 2001;380:123–51.

    Article  CAS  Google Scholar 

  6. Wesolowski M. The influence of various tablet components on thermal-decomposition of some pharmaceuticals. Mikrochim Acta. 1980;1:199–213.

    Article  CAS  Google Scholar 

  7. Neto HS, Novak C, Matos JR. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. J Therm Anal Calorim. 2009;97:367–74.

    Article  Google Scholar 

  8. Kumar N, Goindi S, Saini B, Bansal G. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J Therm Anal Calorim. 2014;115:2375–83.

    Article  CAS  Google Scholar 

  9. Lira AM, Araújo AAS, Basílio IDJ, Santos BLL, Santana DP, Macedo RO. Compatibility studies of lapachol with pharmaceutical excipients for the development of topical formulations. Thermochim Acta. 2007;457:1–6.

    Article  CAS  Google Scholar 

  10. Lvova MSH, Kozlov EI, Wishnevezkaya IA. Thermal-analysis in the quality-control and standardization of some drugs. J Therm Anal Calorim. 1993;40:405–11.

    Article  CAS  Google Scholar 

  11. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68:335–57.

    Article  CAS  Google Scholar 

  12. Giron D, Goldbronn C. Use of DSC and TG for identification and quantification of the dosage form. J Therm Anal Calorim. 1997;48:473–83.

    Article  CAS  Google Scholar 

  13. Materazzi S, Curini R, Gentili A, A’Ascenzo G. TG-FTIR, DSC and ESCA characterization of histamine complexes with transition metal ions. Thermochim Acta. 1997;307:45–50.

    Article  CAS  Google Scholar 

  14. Rodriguez C, Bugay DE. Characterization of pharmaceutical solvates by combined thermogravimetric and infrared analysis. J Pharm Sci. 1997;86:263–6.

    Article  CAS  Google Scholar 

  15. Fulias A, Vlase G, Vlase T, Tit AB, Tit AD, Doca N. Thermal study of cefoperazone monohydrate. Rev Roum Chim. 2010;55:481–6.

    CAS  Google Scholar 

  16. Fulias A, Vlase T, Vlase G, Doca N. Thermal behaviour of cephalexin in different mixtures. J Therm Anal Calorim. 2010;99:987–92.

    Article  CAS  Google Scholar 

  17. Jingyan S, Yuwen L, Zhiyong W, Cunxin W. Investigation of thermal decomposition of ascorbic acid by TG-FTIR and thermal kinetics analysis. J Pharm Biomed Anal. 2013;77:116–9.

    Article  Google Scholar 

  18. Marr TR. Thermal analysis of tetracycline hydrates: 1. Preparation and identification. Thermochim Acta. 1973;5:285–91.

    Article  Google Scholar 

  19. Mitchell JM, Griffiths MW, McEwen SA, McNab WB, Yee AJ. Antimicrobial drug residues in milk and meat: causes, concerns, prevalence, regulations, tests, and test performance. J Food Prot. 1998;61:742–56.

    CAS  Google Scholar 

  20. Maia ECP, Silva PP, Almeida WB, dos Santos HF, Marcial BL, Ruggiero R, Guerra W. Tetraciclinas e glicilciclinas: uma visão geral. Quim Nova. 2010;33:700–6.

    Article  Google Scholar 

  21. Calixto CMF, Cervini P, Cavalheiro ETG. Determination of tetracycline in environmental water samples at a graphite-polyurethane composite electrode. J Braz Chem Soc. 2012;23:938–43.

    Article  CAS  Google Scholar 

  22. Yildiz Ö, Unluturk S. Differential scanning calorimetry as a tool to detect antibiotic residues in ultra high temperature whole milk. Int J Food Sci Technol. 2009;44:2577–82.

    Article  CAS  Google Scholar 

  23. Lee KC, Hersey JA. Oxytetracycline tablet formulations: preformulation stability screening using differential thermal-analysis. J Pharm Pharmacol. 1977;29:515–6.

    Article  CAS  Google Scholar 

  24. Changa PH, Jeana JS, Jianga WT, Li Z. Mechanism of tetracycline sorption on rectorite. Colloids Surf A. 2009;339:94–9.

    Article  Google Scholar 

  25. Fernandes NS, Carvalho Filho MAS, Mendes RA, Ionashiro M. Thermal decomposition of some chemotherapic substances. J Braz Chem Soc. 1999;10:459–62.

    Article  CAS  Google Scholar 

  26. Toro R, de Delgado DG, Bahsas A, Delgado JM. The presence of polymorphism in oxytetracycline hydrochloride shown by X-ray powder diffraction techniques. Z. Krist Cryst Mater. 2007;26:563–8.

    Article  Google Scholar 

  27. Li F, Li H, Guan L, Yao M. Nanocrystalline Co2+/F codoped TiO2–SiO2 composite films for environmental applications. Chem Eng J. 2014;252:1–10.

    Article  CAS  Google Scholar 

  28. Salcedoa I, Aguzzi GS, Bonferoni C, Cerezo P, Sánchez-Espejo R, Viseras C. Intestinal permeability of oxytetracycline from chitosan-montmorillonite nanocomposites. Colloids Surf B. 2014;117:441–8.

    Article  Google Scholar 

  29. http://www.lookchem.com/cas-205/2058-46-0.html.

  30. Nicolet EPA Vapor Phase database. Omnic 8.0 software. Thermo Scientific.

  31. Silverstein RM, Bassler GC, Morril TC. Spectrometric identification of organic compounds. 3rd ed. New York: Wiley; 1991.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to agencies FAPESP (Process: 2012/09911-3), CNPq, as well as Procontes/USP and CiTecBio/NAP’s–PRP/USP programs, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éder Tadeu Gomes Cavalheiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervini, P., Ambrozini, B., Machado, L.C.M. et al. Thermal behavior and decomposition of oxytetracycline hydrochloride. J Therm Anal Calorim 121, 347–352 (2015). https://doi.org/10.1007/s10973-015-4447-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4447-x

Keywords

Navigation