Skip to main content
Log in

Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal diffusivity values of mixtures comprising ethylene glycol and an aqueous dispersion of gold nanoparticles (50/50 volume ratio) is measured using dual-beam thermal-lens technique, as a function of concentration of gold nanoparticles, and the results are compared with the corresponding thermal diffusivity values of gold nanofluids alone. The results show that, in addition to the well-known effect of nanoparticle concentration, the host fluid also play a crucial role in determining the effective thermal diffusivity value of the mixture. The UV–Vis spectroscopic studies of nanoparticles, prepared via citrate reduction method, exhibit the surface plasmon resonance band peaking around 520 nm and the transmission electron microscopic studies reveal that the particles are well dispersed and are having an average size of 15 nm. The transmission electron microscopy images of the gold nanoparticles in the mixture clearly indicate the formation of chain-like aggregates due to dipole–dipole interaction. Such a chain-like structure allows easy transport of thermal energy, which results in enhancement of thermal diffusivity values of the mixture as compared to the gold nanofluids alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H. Small particles, big impacts: a review of the diverse applications ofnanofluids. J Appl Phys. 2013;113:011301.

    Article  Google Scholar 

  2. Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117:675–81.

    Article  Google Scholar 

  3. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  4. Wong KV, De Leon O. Applications of nanofluids: current and future. Adv Mech Eng. 2010;2010:1–11.

    Google Scholar 

  5. Barbes B, Paramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115:1883–91.

    Article  CAS  Google Scholar 

  6. Lee JH, Lee SH, Choi CJ, Jang SP, Choi SUS. A review of thermal conductivity data, mechanisms and models for nanofluids. Int J Micro-Nano Scale Transp. 2010;1:269–322.

    Article  CAS  Google Scholar 

  7. Buongiorno J, Venerus DC, Prabhat N, et al. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:094312.

    Article  Google Scholar 

  8. Das SK, Choi SUS, Patel HE. Heat transfer in nanofluids–a review. Heat Transf Eng. 2006;27:3–19.

    Article  CAS  Google Scholar 

  9. Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev. 2007;11:512–23.

    Article  CAS  Google Scholar 

  10. Moghadassi AR, Masoud Hosseini S, Henneke D, Elkamel A. A model of nanofluids effective thermal conductivity based on dimensionless groups. J Therm Anal Calorim. 2009;96:81–4.

    Article  CAS  Google Scholar 

  11. Evans W, Fish J, Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett. 2006;88:093116.

    Article  Google Scholar 

  12. Mehta S, Chauhan KP, Kanagaraj S. Modeling of thermal conductivity of nanofluids by modifying Maxwell’s equation using cell model approach. J Nanopart Res. 2011;13:2791–8.

    Article  CAS  Google Scholar 

  13. Wang XQ, Mujumdar AS. A review on nanofluids-part I: theoretical and numerical investigations. Braz J Chem Eng. 2008;25:613–30.

    CAS  Google Scholar 

  14. Xie H, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf. 2005;48:2926–32.

    Article  CAS  Google Scholar 

  15. Feng Y, Yu B, Xu P, Zou M. The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys. 2007;40:3164.

    Article  CAS  Google Scholar 

  16. Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5:167–71.

    Article  CAS  Google Scholar 

  17. Eapen J, Rusconi R, Piazza R, Yip S. The classical nature of thermal conduction in nanofluids. J Heat Transf. 2010;132:102402.

    Article  Google Scholar 

  18. Wang ZL, Tang DW, Liu S, Zheng XH, Araki N. Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport. Int J Thermophys. 2007;28:1255–68.

    Article  CAS  Google Scholar 

  19. Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007;31:593–9.

    Article  CAS  Google Scholar 

  20. Murshed SMS, Leong KC, Yang C. Determination of the effective thermal diffusivity of nanofluids by the double hot-wire technique. J Phys D Appl Phys. 2006;39:5316.

    Article  CAS  Google Scholar 

  21. George SD, Radhakrishnan P, Nampoori VPN, Vallabhan CPG. Photothermal deflection measurement on heat transport in GaAs epitaxial layers. Phys Rev B. 2003;68:165319.

    Article  Google Scholar 

  22. George SD, Saravanan S, Anatharaman MR, Venketachalam S, Radhakrishnan P, Nampoori VPN. Thermal characterization of doped polyaniline and its composites with CoPc. Phys Rev B. 2004;69:235201.

    Article  Google Scholar 

  23. Manuel A, Kumar BR, Basheer NS, Kumari BS, Paulose PI, Kurian A, George SD. Thermo–optic characterization of neodymium/nickel doped silica glasses prepared via sol-gel route. Spectrochim Acta A. 2012;98:474–8.

    Article  CAS  Google Scholar 

  24. Kumar BR, Basheer NS, Manuel A, Kurian A, George SD. Effect of annealing temperature on the thermo-optic properties of holmium doped silica glasses prepared by sol-gel method. AIP Conf Proc. 2011;1391:158–60.

    Article  CAS  Google Scholar 

  25. Gordon JP, Leite RCC, Moore RS, Porto SP, Whinnery JR. Long–transient effects in lasers with inserted liquid samples. J Appl Phys. 1965;36:3–8.

    Article  Google Scholar 

  26. Hu C, Whinnery JR. New thermooptical measurement method and a comparison with other methods. Appl Opt. 1973;12:72–9.

    Article  CAS  Google Scholar 

  27. Brannon JH, Magde D. Absolute quantum yield determination by thermal blooming. J Phys Chem. 1978;82:705–9.

    Article  CAS  Google Scholar 

  28. Kurian A, Unnikrishnan KP, George DS, Gopinath P, Nampoori VPN, Vallabhan CPG. Thermal lens spectrum of organic dyes using optical parametric oscillator. Spectrochim Acta A. 2003;59:487–91.

    Article  Google Scholar 

  29. Moreira LM, Carvalho EA, Bell MJV, Anjos V, Sant’Ana AC, Alves APP, Fragneaud B, Sena LA, Archanjo BS, Achete CA. Thermo-optical properties of silver and gold nanofluids. J Therm Anal Calorim. 2013;114:557–64.

    Article  CAS  Google Scholar 

  30. Kumar BR, Basheer NS, Kurian A, George SD. Effect of particle size on the thermo-optic properties of gold nanofluids–a thermal lens study. AIP Conf Proc. 2014;1576:118–21.

    CAS  Google Scholar 

  31. Hari M, Joseph SA, Mathew S, Nithyaja B, Nampoori VPN, Radhakrishnan P. Thermal diffusivity of nanofluids composed of rod-shaped silver nanoparticles. Int J Therm Sci. 2012;64:188–94.

    Article  Google Scholar 

  32. Joseph SA, Hari M, Mathew S, Sharma G, Hadiya VM, Radhakrishnan P, Nampoori VPN. Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique. Opt Commun. 2010;283:313–7.

    Article  CAS  Google Scholar 

  33. Basheer NS, Kumar BR, Kurian A, George SD. Thermal lens probing of distant dependent fluorescence quenching of Rhodamine 6G by silver nanoparticles. J Lumin. 2013;137:225–9.

    Article  Google Scholar 

  34. Basheer NS, Kumar BR, Kurian A, George SD. Silver nanoparticle size–dependent measurement of quantum efficiency of Rhodamine 6G. Appl Phys B. 2013;113:581–7.

    Article  CAS  Google Scholar 

  35. Kumar BR, Basheer NS, Kurian A, George SD. Study of concentration-dependent quantum yield of Rhodamine 6G by gold nanoparticles using thermal-lens technique. Appl Phys B. 2014;115:335–42.

    Article  CAS  Google Scholar 

  36. Kumar BR, Basheer NS, Kurian A, George SD. Thermal-Lens study on the distance-dependent energy transfer from Rhodamine 6G to gold Nanoparticles. Int J Thermophys. 2013;34:1982–92.

    Article  CAS  Google Scholar 

  37. Barbes B, Paramo R, Blanco E, Pastoriza-Gallego MJ, Pineiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111:1615–25.

    Article  CAS  Google Scholar 

  38. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:20–2.

    Article  CAS  Google Scholar 

  39. Lewis DJ, Day TM, MacPherson JV, Pikramenou Z. Luminescent nanobeads: attachment of surface reactive Eu(III) complexes to gold nanoparticles. Chem. Commun. 2006;13:1433–5.

    Article  Google Scholar 

  40. Bindhu CV, Harilal SS, Nampoori VPN, Vallabhan CPG. Thermal diffusivity measurements in organic liquids using transient thermal lens calorimetry. Opt Eng. 1998;37:2791–4.

    Article  CAS  Google Scholar 

  41. Balderas-López JA, Mandelis A, Garcia JA. Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev Sci Instrum. 2000;71:2933–7.

    Article  Google Scholar 

  42. Delenclos S, Chirtoc M, Sahraoui AH, Kolinsky C, Buisine JM. Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method. Rev Sci Instrum. 2002;73:2773–80.

    Article  CAS  Google Scholar 

  43. Huang L, Liu LS. Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method. J Food Eng. 2009;95:179–85.

    Article  CAS  Google Scholar 

  44. Guimaraes AO, Machado FAL, da Silva EC, Mansanares AM. Investigating thermal properties of biodiesel/diesel mixtures using photopyroelectric technique. Thermochim Acta. 2012;527:125–30.

    CAS  Google Scholar 

  45. Bradley JS, Schmid G. Noble Metal Nanoparticles. In: Schmid G, editor. Nanoparticles: from theory to application. Weinheim: Wiley-VCH; 2004. p. 186–99.

    Google Scholar 

  46. Halsey TC, Duplantier B, Honda K. Multifractal dimensions and their fluctuations in diffusion-limited aggregation. Phys Rev Lett. 1997;78:1719–22.

    Article  CAS  Google Scholar 

  47. Quinten M, Kreibig U. Optical properties of aggregates of small metal particles. Surf Sci. 1986;172:557–77.

    Article  CAS  Google Scholar 

  48. Winslow WM. Induced fibration of suspensions. J Appl Phys. 1949;20:1137–40.

    Article  CAS  Google Scholar 

  49. Xu S, Bevis B, Arnsdorf MFB. The assembly of amyloidogenic yeast sup35 as assessed by scanning (atomic) force microscopy: an analogy to linear colloidal aggregation? Biophys J. 2001;81:446–54.

    Article  CAS  Google Scholar 

  50. Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett. 2006;89:143119.

    Article  Google Scholar 

  51. Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf. 2008;51:1431–8.

    Article  CAS  Google Scholar 

  52. Shima PD, Philip J, Raj B. Influence of aggregation on thermal conductivity in stable and unstable nanofluids. Appl Phys Lett. 2010;97:153113.

    Article  Google Scholar 

  53. Rondino F, D’Amato R, Terranova G, Borsella E, Falconieri M. Thermal diffusivity enhancement in nanofluids based on pyrolytic titania nanopowders: importance of aggregate morphology. J Raman Spectrosc. 2014;45:528–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AK is grateful to the Kerala State Council for Science, Technology and Environment (KSCSTE), Kerala, India for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajan D. George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh Kumar, B., Shemeena Basheer, N., Jacob, S. et al. Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture. J Therm Anal Calorim 119, 453–460 (2015). https://doi.org/10.1007/s10973-014-4208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4208-2

Keywords

Navigation