Skip to main content
Log in

Decreased thermal diffusivity in fluids containing InP nanocrystals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Colloidal suspensions of semiconductor InP nanocrystals were prepared using the reaction of indium myristate and tris(trimethylsilyl)phosphine in 1-octadecene at elevated temperatures. The semiconductor nanocrystals are highly crystalline, monodisperse and soluble in various organic solvents. Thermal properties of toluene containing 4.6 nm InP semiconductor with different percentage mass (6.0–16.0 %) were measured using the mode-mismatched dual-beam thermal lens technique. This was performed to determine the effect on nanofluids’ thermal diffusivity caused by the presence and concentration of semiconductor nanocrystals. The characteristic time constant of the transient thermal lens was estimated by fitting the experimental data to the theoretical expression for transient thermal lens to determine the thermal diffusivity of the semiconductor nanofluids (toluene containing InP nanocrystals). The results obtained show that the nanofluids’ thermal diffusivity depends strongly on the contents of the nanocrystals. The thermal diffusivity enhancement in nanofluids is negative when concentration of nanocrystals increases. Such behavior differs from other nanofluids, since they have shown positive thermal diffusivity enhancements. The minimum diffusivity was achieved on nanofluids with higher concentrations. A possible explanation for such low thermal diffusivity of the nanofluids with semiconductor nanocrystals is given. In order to characterize the InP nanocrystals, the following techniques were used: UV–Vis spectroscopy, transmission electron microscopy and high-resolution electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Singer DA, Wang HP, editors. Developments and applications of non-newtonian flows. New York: American Society of Mechanical Engineers; 1995. p. 99–105.

    Google Scholar 

  2. Dan L, Wenjun F, Huiqin W, Chao G, Renyi Z, Keke C. Gold/oil nanofluids stabilized by a gemini surfactant and their catalytic property. Ind Eng Chem Res. 2013;52:8109–13.

    Article  Google Scholar 

  3. Wong KV, De Leon O. Application of nanofluids: current and future. Adv Mech Eng. 2010; 2010: Article ID 519659:1–11.

  4. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H. Small particles, big impacts; a review of the diverse applications of nanofluids. J Appl Phys. 2013;113:011301.

    Article  Google Scholar 

  5. Wang X-Q, Mujumdar AS. A review on nanofluids-part II: experimental and applications. Braz J Chem Eng. 2008;25:631–48.

    Article  Google Scholar 

  6. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Tran. 2009;52:3187–96.

    Article  Google Scholar 

  7. Wang X-Q, Mujumdar AS. A review on nanofluids-part I: theoretical and numerical investigations. Braz J Chem Eng. 2008;25:613–30.

    CAS  Google Scholar 

  8. Barbés B, Páramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115:1883–91.

    Article  Google Scholar 

  9. Wang X-Q, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46:1–19.

    Article  Google Scholar 

  10. Kwek D, Crivoi A, Duan F. Effects of temperature and particle size on the thermal property measurements of Al2O3-water nanofluids. J Chem Eng Data. 2010;55:5690–5.

    Article  CAS  Google Scholar 

  11. Shima PD, Philip J, Raj B. Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. J Phys Chem C. 2010;114:18825–33.

    Article  CAS  Google Scholar 

  12. Xie H, Chen L. Review on the preparation and thermal performances of carbon nanotube containing nanofluids. J Chem Eng Data. 2011;56:1030–41.

    Article  CAS  Google Scholar 

  13. Baby TT, Sundara R. Synthesis and transport properties of metal oxide decorated grapheme dispersed nanofluids. J Phys Chem C. 2011;115:8527–33.

    Article  CAS  Google Scholar 

  14. Amiri A, Shanbedi M, Eshghi H, Heris SZ, Baniadam M. Highly dispersed multiwalled carbon nanotubes decorated with Ag nanoparticles in water and experimental investigation of the thermophysical properties. J Phys Chem C. 2012;116:3369–75.

    Article  CAS  Google Scholar 

  15. Paul G, Chopkar M, Manna I, Das PK. Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sust Energ Rev. 2010;14:1913–24.

    Article  CAS  Google Scholar 

  16. Jiménez-Pérez JL, Sánchez-Ramírez JF, Cruz-Orea A, Gutiérrez Fuentes R, Cornejo Monroy D, López-Muñoz GA. Heat transfer enhanced in water containing TiO2 nanospheres. J Nano Res. 2010;9:55–60.

    Article  Google Scholar 

  17. Jiménez-Pérez JL, Cruz-Orea A, Sánchez-Sinencio JF, Sánchez-Sinencio F, Martínez-Pérez I, López Muñoz GA. Thermal characterization of nanofluids with different solvents. Int J Thermophys. 2009;30:1227–33.

    Article  Google Scholar 

  18. Gutiérrez Fuentes R, Pescador Rojas JA, Jiménez-Pérez JL, Sánchez Ramírez JF, Cruz-Orea A, Mendoza-Álvarez JG. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure. Appl Surf Sci. 2008;255:781–3.

    Article  Google Scholar 

  19. Gutiérrez Fuentes R, Sánchez-Ramírez JF, Jiménez Pérez JL, Pescador Rojas JA, Ramón-Gallegos E, Cruz-Orea A. Thermal diffusivity determination of protoporphyrin IX solution mixed with gold metallic nanoparticles. Int J Thermophys. 2007;28:1048–55.

    Article  Google Scholar 

  20. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR. Nanoscale thermal transport. J Appl Phys. 2003;93:793–818.

    Article  CAS  Google Scholar 

  21. Liu W, Asheghi M. Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl Phys Lett. 2004;84:3819–21.

    Article  CAS  Google Scholar 

  22. Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A. Thermal conductivity of individual silicon nanowires. Appl Phys Lett. 2003;83:2934–6.

    Article  CAS  Google Scholar 

  23. Teja AS, Beck MP, Yuan Y, Warrier P. The limiting behavior of the thermal conductivity of nanoparticles and nanofluids. J Appl Phys. 2010;107:114319.

    Article  Google Scholar 

  24. Michalet X, Pinaud F F, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cell, in vivo imaging, and diagnostic. Science. 2005; 307: 438–44.

  25. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Ann Rev Anal Chem. 2013;6:143–62.

    Article  CAS  Google Scholar 

  26. Bindhu CV, Harilal SS, Nampoori VPN, Villabhan CPG. Thermal diffusivity measurements in organic liquids using transient thermal lens calorimetry. Opt Eng. 1998;37:2791–4.

    Article  CAS  Google Scholar 

  27. Moreira LM, Carvalho EA, Bell MJV, Anjos V, Sant’Ana AC, Alves APP, Fragneaud B, Sena LA, Archanjo BS, Achete CA. Thermo-optical properties of silver and gold nanofluids. J Therm Anal Calorim. 2013;114:557–64.

    Article  CAS  Google Scholar 

  28. Li L, Reiss P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J Am Chem Soc. 2008;130:11588–9.

    Article  CAS  Google Scholar 

  29. Shen J, Lowe RD, Snook RD. A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem Phys. 1992;165:385–96.

    Article  CAS  Google Scholar 

  30. Mićić OI, Cheong HM, Fu H, Zunger A, Sprague JR, Mascarenhas A, Nozik AJ. Size dependent spectroscopy of InP quantum dots. J Phys Chem. 1997;101:4904–12.

    Article  Google Scholar 

  31. Byun HJ, Lee JC, Yang H. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments. J Colloid Interface Sci. 2011;355:35–41.

    Article  CAS  Google Scholar 

  32. Ponomareva I, Srivastava D, Menon M. Thermal conductivity in thin silicon nanowires: phonon confinement effect. Nano Lett. 2007;7:1155–9.

    Article  CAS  Google Scholar 

  33. George SD, Radhakrishnan P, Nampoori VPN, Vallabhan CPG. Thermal characterization of intrinsic and extrinsic InP using photoacoustic technique. J Phys D Appl Phys. 2003;36:990–3.

    Article  CAS  Google Scholar 

  34. Liang LH, Li B. Size-dependent thermal conductivity of nanoscale semiconducting system. Phys Rev B. 2006;73:153303–4.

    Article  Google Scholar 

  35. http://www.ioffe.ru/SVA/NSM/Semicond/InP/thermal.html.

  36. Kang S, Myles CW. Effect of deep level impact ionization on avalanche breakdown in semiconductor p–n junctions. Phys Stat Sol A. 2000;181:219–29.

    Article  CAS  Google Scholar 

  37. Zhang Z, Zhao M, Jiang Q. Melting temperatures of semiconductor nanocrystals in the mesoscopic size range. Semicond Sci Technol. 2001;16:L33–5.

    Article  CAS  Google Scholar 

  38. Liang LH, Shen CM, Chen XP, Liu WM, Gao HJ. The size-dependent phonon frequency of semiconductor nanocrystals. J Phys Condens Matter. 2004;16:267–72.

    Article  CAS  Google Scholar 

  39. Srinivasan R, Ramachandran K. Thermal diffusion in nanostructured porous InP. Bull Mater Sci. 2008;31:863–8.

    Article  CAS  Google Scholar 

  40. Turian RM, Sung DJ, Hsu FL. Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions. Fuel. 1991;70:1157–72.

    Article  CAS  Google Scholar 

  41. Eapen J, Li J, Yip S. Probing transport mechanisms in nanofluids by molecular dynamics simulations. 18th National and 7th ISHMT–ASME Heat and Mass Transfer Conference, IIT Guwahati, India, 2006. Paper No. HMT-2006-C339.

Download references

Acknowledgements

The authors are thankful to the Mexican Agencies, ICyTDF, CONACYT, COFAA-IPN, SIP-IPN for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Sánchez Ramírez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez Ramírez, J.F., Arvizu Amador, S.F., Jiménez Pérez, J.L. et al. Decreased thermal diffusivity in fluids containing InP nanocrystals. J Therm Anal Calorim 120, 1563–1571 (2015). https://doi.org/10.1007/s10973-015-4518-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4518-z

Keywords

Navigation